Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(1): e101689, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617608

RESUMO

Homologous chromosome segregation during meiosis I (MI) in mammalian oocytes is carried out by the acentrosomal MI spindles. Whereas studies in human oocytes identified Ran GTPase as a crucial regulator of the MI spindle function, experiments in mouse oocytes questioned the generality of this notion. Here, we use live-cell imaging with fluorescent probes and Förster resonance energy transfer (FRET) biosensors to monitor the changes in Ran and importin ß signaling induced by perturbations of Ran in mouse oocytes while examining the MI spindle dynamics. We show that unlike RanT24N employed in previous studies, a RanT24N, T42A double mutant inhibits RanGEF without perturbing cargo binding to importin ß and disrupts MI spindle function in chromosome segregation. Roles of Ran and importin ß in the coalescence of microtubule organizing centers (MTOCs) and MI spindle assembly are further supported by the use of the chemical inhibitor importazole, whose effects are partially rescued by the GTP hydrolysis-resistant RanQ69L mutant. These results indicate that RanGTP is essential for MI spindle assembly and function both in humans and mice.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Meiose/fisiologia , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Fuso Acromático/fisiologia , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Mutação , Proteínas Nucleares/genética , Oócitos/citologia , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética
2.
Mol Hum Reprod ; 30(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265252

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) modification exists widely in cells, playing a crucial role in the regulation of important biological processes such as transcription, translation, metabolism, and the cell cycle. O-GlcNAc modification is an inducible reversible dynamic protein post-translational modification, which regulates complex cellular activities through transient glycosylation and deglycosylation. O-GlcNAc glycosylation is specifically regulated by O-GlcNAc glycosyltransferase (O-GlcNAc transferase, OGT) and O-GlcNAc glycoside hydrolase (O-GlcNAcase). However, the mechanisms underlying the effects of O-GlcNAc modification on the female reproductive system, especially oocyte quality, remain unclear. Here, we found that after OGT was inhibited, porcine oocytes failed to extrude the first polar body and exhibited abnormal actin and microtubule assembly. Meanwhile, the mitochondrial dynamics and function were also disrupted after inhibition of OGT function, resulting in the occurrence of oxidative stress and autophagy. Collectively, these results inform our understanding of the importance of the glycosylation process for oocyte maturation, especially for the maturation quality of porcine oocytes, and the alteration of O-GlcNAc in oocytes to regulate cellular events deserves further investigation.


Assuntos
Dinâmica Mitocondrial , Processamento de Proteína Pós-Traducional , Feminino , Animais , Suínos , Oócitos/metabolismo
3.
J Nanobiotechnology ; 22(1): 138, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555444

RESUMO

Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aß11 and Tween 80 (Aß11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aß11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Minociclina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Água
4.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791176

RESUMO

Extensive microbial interactions occur within insect hosts. However, the interactions between the Huanglongbing (HLB) pathogen and endosymbiotic bacteria within the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) in wild populations remain elusive. Thus, this study aimed to detect the infection rates of HLB in the ACP across five localities in China, with a widespread prevalence in Ruijin (RJ, 58%), Huidong (HD, 28%), and Lingui (LG, 15%) populations. Next, microbial communities of RJ and LG populations collected from citrus were analyzed via 16S rRNA amplicon sequencing. The results revealed a markedly higher microbial diversity in the RJ population compared to the LG population. Moreover, the PCoA analysis identified significant differences in microbial communities between the two populations. Considering that the inter-population differences of Bray-Curtis dissimilarity in the RJ population exceeded those between populations, separate analyses were performed. Our findings indicated an increased abundance of Enterobacteriaceae in individuals infected with HLB in both populations. Random forest analysis also identified Enterobacteriaceae as a crucial indicator of HLB infection. Furthermore, the phylogenetic analysis suggested a potential regulatory role of ASV4017 in Enterobacteriaceae for ACP, suggesting its possible attractant activity. This research contributes to expanding the understanding of microbial communities associated with HLB infection, holding significant implications for HLB prevention and treatment.


Assuntos
Enterobacteriaceae , Hemípteros , Filogenia , Doenças das Plantas , RNA Ribossômico 16S , Animais , Hemípteros/microbiologia , Enterobacteriaceae/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/patogenicidade , RNA Ribossômico 16S/genética , Doenças das Plantas/microbiologia , China/epidemiologia , Citrus/microbiologia , Microbiota
5.
Virol J ; 20(1): 280, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031162

RESUMO

BACKGROUND: Promyelocytic leukemia protein (PML) is a primary component of PML nuclear bodies (PML-NBs). PML and PML-NBs play critical roles in processes like the cell cycle, DNA damage repair, apoptosis, and the antiviral immune response. Previously, we identified five porcine PML alternative splicing variants and observed an increase in the expression of these PML isoforms following Japanese encephalitis virus (JEV) infection. In this study, we examined the functional roles of these PML isoforms in JEV infection. METHODS: PML isoforms were either knocked down or overexpressed in PK15 cells, after which they were infected with JEV. Subsequently, we analyzed the gene expression of PML isoforms, JEV, and the interferon (IFN)-ß signaling pathway using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Viral titers were determined through 50% tissue culture infectious dose (TCID50) assays. RESULTS: Our results demonstrated that the knockdown of endogenous PML promoted JEV replication, while the overexpression of PML isoforms 1, 3, 4, and 5 (PML1, PML3, PML4, and PML5) inhibited JEV replication. Further investigation revealed that PML1, PML3, PML4, and PML5 negatively regulated the expression of genes involved in the interferon (IFN)-ß signaling pathway by inhibiting IFN regulatory factor 3 (IRF3) post-JEV infection. CONCLUSIONS: These findings demonstrate that porcine PML isoforms PML1, PML3, PML4, and PML5 negatively regulate IFN-ß and suppress viral replication during JEV infection. The results of this study provide insight into the functional roles of porcine PML isoforms in JEV infection and the regulation of the innate immune response.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Suínos , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Fatores de Transcrição/genética , Interferons , Isoformas de Proteínas/genética , Replicação Viral
6.
Phys Chem Chem Phys ; 25(45): 31206-31221, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955184

RESUMO

The biological characteristics of planar heterojunction nanomaterials and their interactions with biomolecules are crucial for the potential application of these materials in the biomedical field. This study employed molecular dynamics (MD) simulations to investigate the interactions between proteins with distinct secondary structures (a single α-helix representing the minimal oligomeric domain protein, a single ß-sheet representing the WW structural domain of the Yap65 protein, and a mixed α/ß structure representing the BBA protein) and a planar two-dimensional heterojunction (a GRA/h-BN heterojunction consisting of a graphene nanoplate (GRA) and a hexagonal boron nitride nanoplate (h-BN)). The results indicate that all three kinds of protein can be quickly and stably adsorbed on the GRA/h-BN heterojunction due to the strong van der Waals interaction, regardless of their respective types, structures and initial orientations. Moreover, the proteins exhibit a pronounced binding preference for the hBN region of the GRA/h-BN heterojunction. Upon adsorption, the α-helix structure of the minimal oligomeric domain protein experiences partial or complete denaturation. Conversely, while the secondary structure of the single ß-sheet and mixed α/ß structure (BBA protein) undergoes slight changes (focus on the coil and turn regions), the main α-helix and ß-sheet structures remain intact. The initial orientation significantly impacts the degree of protein adsorption and its position on the GRA/h-BN heterojunction. However, regardless of the initial orientation, proteins can ultimately be adsorbed onto the GRA/h-BN heterojunction. Furthermore, the initial orientation has a minor influence on the structural changes of proteins. Significantly, the combination of different secondary structures helps mitigate the denaturation of a single α-helix structure to some extent. Overall, the adsorption of proteins on GRA/h-BN is primarily driven by van der Waals and hydrophobic interactions. Proteins with ß-sheet or mixed structures exhibit stronger biocompatibility on the GRA/h-BN heterojunction. Our research elucidated the biological characteristics of GRA/h-BN heterojunction nanomaterials and their interactions with proteins possessing diverse secondary structures. It offers a theoretical foundation for considering heterojunction nanomaterials as promising candidates for biomedical applications.


Assuntos
Grafite , Grafite/química , Adsorção , Simulação de Dinâmica Molecular , Compostos de Boro/química
7.
Anim Biotechnol ; 34(1): 85-92, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34289783

RESUMO

This study compared and analyzed the genetic diversity and population structure of exon 2 of the DQB1 gene and 13 autosomal neutral microsatellite markers from 14 Chinese goat breeds to explore the potential evolutionary mechanism of the major histocompatibility complex (MHC). A total of 287 haplotypes were constructed from MHC-DQB1 exon 2 from 14 populations, and 82 nucleotide polymorphic sites (SNPs, 31.78%) and 172 heterozygous individuals (79.12%) were identified. The FST values of the microsatellites and MHC-DQB ranged between 0.01831-0.26907 and 0.00892-0.38871, respectively. Furthermore, 14 goat populations showed rich genetic diversity in the microsatellite loci and MHC-DQB1 exon 2. However, the population structure and phylogenetic relationship represented by the two markers were different. Positive selection and Tajima's D test results showed the occurrence of a diversified selection mechanism, which was primarily based on a positive and balancing selection in goat DQB. This study also found that the DQB sequences of bovines exhibited trans-species polymorphism (TSP) among species and families. In brief, this study indicated that positive and balancing selection played a major role in maintaining the genetic diversity of DQB, and TSP of MHC in bovines was common, which enhanced the understanding of the MHC evolution.


Assuntos
Genética Populacional , Cabras , Animais , Bovinos , Filogenia , Cabras/genética , Polimorfismo Genético , Éxons , Repetições de Microssatélites , Variação Genética , Alelos
8.
Ecotoxicol Environ Saf ; 252: 114593, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724708

RESUMO

Zinc, an essential trace mineral, plays a pivotal role in cell proliferation, maintenance of redox homeostasis, apoptosis, and aging. Serum zinc concentrations are reduced in patients with polycystic ovary syndrome (PCOS). However, the underlying mechanism of the effects of zinc deficiency on the female reproductive system, especially oocyte quality, has not been fully elucidated. Thus, we established an in vitro experimental model by adding N,N,N',N'-Tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) into the culture medium, and to determine the potential regulatory function of zinc during porcine oocytes maturation. In the present study, we found that zinc deficiency caused aberrant meiotic progress, accompanied by the disrupted cytoskeleton structure in porcine oocytes. Zinc deficiency impaired mitochondrial function and dynamics, leading to the increase of reactive oxygen species (ROS) and acetylation level of the antioxidative enzyme superoxide dismutase 2 (SOD2), eventually induced the occurrence of oxidative stress and early apoptosis. Moreover, zinc deficiency perturbed cytosolic Ca2+ homeostasis, lipid droplets formation, demonstrating the aberrant mitochondrial function in porcine oocytes. Importantly, we found that zinc deficiency in porcine oocytes induced the occurrence of mitophagy by activating the PTEN-induced kinase 1/Parkin signaling pathway. Collectively, our findings demonstrated that zinc was a critical trace mineral for maintaining oocyte quality by regulating mitochondrial function and autophagy in porcine oocytes.


Assuntos
Oligoelementos , Suínos , Feminino , Animais , Oligoelementos/metabolismo , Mitofagia , Oócitos/metabolismo , Zinco/toxicidade , Zinco/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose
9.
Molecules ; 28(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37446641

RESUMO

Metal-organic frameworks (MOFs) with porosity and functional adjustability have great potential for the removal of organic dyes in the wastewater. Herein, an anionic porous metal-organic framework (MOFs) [Me2NH2]2In2[(TATAB)4(DMF)4]·(DMF)4(H2O)4 (HDU-1) was synthesized, which is constructed from a [In(OOC)4]- cluster and a nitrogen-rich linker H3TATAB (4,4',4″-s-triazine-1,3,5-triyltri-p-aminobenzoic acid). The negatively charged [In(OOC)4]- cluster and uncoordinated -COOH on the linker result in one unit cell of HDU-1 having 8 negative sites. The zeta potential of -20.8 mV dispersed in pure water also shows that HDU-1 possesses negatively charged surface potential. The high electronegativity, water stability, and porosity of HDU-1 can facilitate the ion-exchange and Coulombic interaction. As expected, the HDU-1 exhibits high selectivity and removal rates towards trace cationic dyes with suitable size, such as methylene blue (MB) (96%), Brilliant green (BG) (99.3%), and Victoria blue B (VB) (93.6%).


Assuntos
Corantes , Estruturas Metalorgânicas , Índio , Porosidade , Nitrogênio , Água , Cátions , Adsorção
10.
Funct Integr Genomics ; 22(4): 553-563, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35412198

RESUMO

Transgenic technology is now widely used in biomedical and agricultural fields. Transgenesis is commonly achieved through random integration which might cause some uncertain consequences. The site-specific integration could avoid this disadvantage. This study aimed to screen and validate the best safe harbor (SH) locus for efficient porcine transgenesis. First, the cells carrying the EGFP reporter construct at four different SH loci (ROSA26, AAVS1, H11 and COL1A1) were achieved through CRSIPR/Cas9-mediated HDR. At the COL1A1 and ROSA26 loci, a higher mRNA and protein expression of EGFP was detected, and it was correlated with a lower level of DNA methylation of the EGFP promoter, hEF1α. A decreased H3K27me3 modification of the hEF1α promoter at the COL1A1 locus was also detected. For the safety of transgenesis at different SH locus, we found that transgenesis could relatively alter the expression of the adjacent endogenous genes, but the influence was limited. We also did not observe any off-target cleavage for the selected sgRNAs of the COL1A1 and ROSA26 loci. In conclusion, the COL1A1 and ROSA26 were confirmed to be the best two SH loci with the COL1A1 being more competitive for porcine transgenesis. This work would greatly facilitate porcine genome engineering and transgenic pig production.


Assuntos
Técnicas de Transferência de Genes , Genoma , Animais , Animais Geneticamente Modificados , Regiões Promotoras Genéticas , Suínos/genética
11.
Adv Funct Mater ; 32(39): 2204692, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35942272

RESUMO

SARS-CoV-2 variants are now still challenging all the approved vaccines, including mRNA vaccines. There is an urgent need to develop new generation mRNA vaccines with more powerful efficacy and better safety against SARS-CoV-2 variants. In this study, a new set of ionizable lipids named 4N4T are constructed and applied to form novel lipid nanoparticles called 4N4T-LNPs. Leading 4N4T-LNPs exhibit much higher mRNA translation efficiency than the approved SM-102-LNPs. To test the effectiveness of the novel delivery system, the DS mRNA encoding the full-length S protein of the SARS-CoV-2 variant is synthesized and loaded in 4N4T-LNPs. The obtained 4N4T-DS mRNA vaccines successfully trigger robust and durable humoral immune responses against SARS-CoV-2 and its variants including Delta and Omicron. Importantly, the novel vaccines have higher RBD-specific IgG titers and neutralizing antibody titers than SM-102-based DS mRNA vaccine. Besides, for the first time, the types of mRNA vaccine-induced neutralizing antibodies are found to be influenced by the chemical structure of ionizable lipids. 4N4T-DS mRNA vaccines also induce strong Th1-skewed T cell responses and have good safety. This work provides a novel vehicle for mRNA delivery that is more effective than the approved LNPs and shows its application in vaccines against SARS-CoV-2 variants.

12.
PLoS Biol ; 17(8): e3000371, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31433808

RESUMO

Inhibitory glycinergic transmission in adult spinal cord is primarily mediated by glycine receptors (GlyRs) containing the α1 subunit. Here, we found that α1ins, a longer α1 variant with 8 amino acids inserted into the intracellular large loop (IL) between transmembrane (TM)3 and TM4 domains, was expressed in the dorsal horn of the spinal cord, distributed at inhibitory synapses, and engaged in negative control over nociceptive signal transduction. Activation of metabotropic glutamate receptor 5 (mGluR5) specifically suppressed α1ins-mediated glycinergic transmission and evoked pain sensitization. Extracellular signal-regulated kinase (ERK) was critical for mGluR5 to inhibit α1ins. By binding to a D-docking site created by the 8-amino-acid insert within the TM3-TM4 loop of α1ins, the active ERK catalyzed α1ins phosphorylation at Ser380, which favored α1ins ubiquitination at Lys379 and led to α1ins endocytosis. Disruption of ERK interaction with α1ins blocked Ser380 phosphorylation, potentiated glycinergic synaptic currents, and alleviated inflammatory and neuropathic pain. These data thus unraveled a novel, to our knowledge, mechanism for the activity-dependent regulation of glycinergic neurotransmission.


Assuntos
Células do Corno Posterior/metabolismo , Receptores de Glicina/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosforilação , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Glicina/fisiologia , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Coluna Vertebral/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
13.
Mol Biol Rep ; 49(10): 9297-9305, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35945402

RESUMO

BACKGROUND: Exosomes are involved in intercellular communication, affecting many physiological and pathological process. The present study evaluated the effects of serum exosomes on the function of bovine mammary epithelial cells (BMECs) and milk synthesis under heat stress. METHODS AND RESULTS: We cultured the BMECs in fetal bovine serum (FBS) or exosome-free FBS medium and examined, their viability using CCK-8 kit. The results showed that culturing the cells in an exosome-free medium decreased viability and increased the levels of reactive oxygen species. The BMECs cultured in the exosome-free medium had reduced mitochondrial membrane potential, decreased manganese superoxide dismutase activity, and disrupted mitochondrial dynamics. They exhibited apoptosis due to upregulated Drp1, Fis1, Bax and HSP70. Lastly, we observed downregulation of milk fat and lactoprotein-related genes: mTOR, PPARγ, p-mTOR and ADD1 and SREBP1, ELF5, and CSN2, respectively, after culturing the cells in an exosome-free medium. These negative effects of the exosome-free medium on the BMECs could be further reinforced under heat stress. CONCLUSION: Our results demonstrated that exosomes from serum are critical for maintaining the normal function of BMECs.


Assuntos
Glândulas Mamárias Animais , PPAR gama , Animais , Células Cultivadas , Células Epiteliais , Resposta ao Choque Térmico , Espécies Reativas de Oxigênio/farmacologia , Soroalbumina Bovina/farmacologia , Sincalida/farmacologia , Superóxido Dismutase , Serina-Treonina Quinases TOR , Proteína X Associada a bcl-2
14.
Ecotoxicol Environ Saf ; 230: 113105, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954678

RESUMO

Simazine is a triazine pesticides that typically detected in ground water and soil, and can reportedly affect reproductive health in humans and animals. However, the effect of simazine on female germ cell development remains unclear. In the present study, we observed that simazine exposure decreased oocyte maturation competence and embryonic developmental capacity. Importantly, simazine exposure disrupted microtubule stability and actin polymerization, resulting in failure of spindle assembly and migration. In addition, simazine exposure impaired mitochondrial function and cytosolic Ca2+ homeostasis in both oocyte and 2-cell embryos, thus increasing the levels of reactive oxygen species (ROS). Moreover, simazine exposure induced DNA damage and early apoptosis during oocyte maturation. Collectively, our results demonstrate that simazine exposure-induced mitochondrial dysfunction and apoptosis are major causes of poor oocytes quality.

15.
Inorg Chem ; 60(15): 11032-11037, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34250806

RESUMO

A highly electronegative carboxyl-decorated anionic metal-organic framework (MOF), (Me2NH2)2[In2(THBA)2](CH3CN)9(H2O)21 (InOF; H4THBA = [1,1':4',1″-terphenyl]-2',3,3″,5,5',5″-hexacarboxylic acid), with high-density electronegative functional sites was designed and constructed. One unit cell of InOF possesses 12 negative sites that originate from the negatively charged secondary building unit [In(COO)4]- and exposed carboxyl groups on the ligand. The abundant electronegative sites can facilitate the hopping of ions in channels and thus result in highly efficient ion conductivities for various metal ions. Our results show that Li+-loaded materials have a remarkably high ion conductivity of 1.49 × 10-3 S/cm, an ion transference number of 0.78, and a relatively low activation energy of 0.19 eV. The Na+, K+, and Zn2+ ion conductivities of InOF are 7.97 × 10-4, 7.69 × 10-4, and 1.22 × 10-3 S/cm at 25 °C, respectively.

16.
Int J Clin Pharmacol Ther ; 58(4): 195-197, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32068532

RESUMO

OBJECTIVE: This study aims to evaluate the clinical efficacy of ketotifen fumarate and budesonide administered as nasal sprays to treat allergic rhinitis. MATERIALS AND METHODS: A total of 96 allergic rhinitis patients, who were admitted to our hospital in recent years, were selected as research subjectes. All patients were treated with ketotifen fumarate and budesonide administered as nasal sprays. Clinical efficacy was evaluated after treatment. RESULTS: After treatment, the symptoms of nasal obstruction, nasal itching, sneezing, and runny nose significantly improved, and the score of these symptoms was significantly lower when compared to that before treatment (p < 0.05). After treatment, the eosinophils and IgE in peripheral blood of patients obviously reduced (p < 0.05). CONCLUSION: Combination treatment of allergic rhinitis using ketotifen fumarate and budesonide administered as nasal sprays has a good clinical effect in treating allergic rhinitis, which is of great significance to improve the clinical symptoms and immune function of patients. Ketotifen fumarate and budesonide have good therapeutic effects on allergic rhinitis. The combination of these two drugs can rapidly relieve allergic symptoms.


Assuntos
Budesonida/uso terapêutico , Cetotifeno/uso terapêutico , Sprays Nasais , Rinite Alérgica/tratamento farmacológico , Administração Intranasal , Humanos , Resultado do Tratamento
17.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 455-462, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29208529

RESUMO

Arf6 (ADP-ribosylation factor 6) is known to play important roles in membrane dynamics through the regulation of actin filament reorganization for multiple cellular processes such as cytokinesis, phagocytosis, cell migration and tumor cell invasion. However, the functions of Arf6 in mammalian oocyte meiosis have not been clarified. In present study we showed that Arf6 expressed in mouse oocytes and was mainly distributed around the spindle during meiosis. Depletion of Arf6 by morpholino microinjection caused oocytes failing to extrude first polar body. Further analysis indicated that Arf6 knock down caused the aberrant actin distribution, which further induced the failure of meiotic spindle movement. And the loss of oocyte polarity also confirmed this. The regulation of Arf6 on actin filaments in mouse oocytes might be due to its effects on the phosphorylation level of cofilin and the expression of Arp2/3 complex. Moreover, we found that the decrease of Arf6 caused the disruption of spindle formation, indicating the multiple roles of Arf6 on cytoskeleton dynamics in meiosis. In summary, our results indicated that Arf6 was involved in mouse oocyte meiosis through its functional roles in actin-mediated spindle movement and spindle organization.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Meiose/fisiologia , Corpos Polares/metabolismo , Fuso Acromático/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Corpos Polares/citologia
18.
Biol Reprod ; 100(1): 15-24, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010726

RESUMO

During mitosis, cells undergo symmetrical cell division, while oocyte meiotic maturation undergoes two consecutive, asymmetric divisions that generate a totipotent haploid oocyte and two small polar bodies not involved in DNA replication. This specialized division allows most maternal components to be maintained in the oocytes for early embryo development. Nuclear positioning, germinal vesicle breakdown, spindle migration, spindle rotation, chromosome segregation, and polar body extrusion are the most critical cellular processes during oocyte meiosis I and II, and a growing number of studies primarily using the mouse oocyte model revealed that actin filaments were critical for these processes, especially for spindle migration. Several important molecules have been reported to be involved in these processes. One family of molecules are the small GTPases, such as Rho GTPases, Ran GTPases, and Rab GTPases and another are the actin nucleators, such as the formin family and the Arp2/3 complex. The present review summarizes recent progress made regarding the roles of actin filaments in the asymmetric oocyte division.


Assuntos
Citoesqueleto de Actina/metabolismo , Meiose/fisiologia , Oócitos/fisiologia , Actinas/metabolismo , Animais , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Mamíferos , Camundongos , Oócitos/metabolismo , Oogênese/fisiologia
19.
Mol Ecol ; 28(14): 3306-3323, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31183910

RESUMO

While it has been proposed in several taxa that the mitochondrial genome is associated with adaptive evolution to different climatic conditions, making links between mitochondrial haplotypes and organismal phenotypes remains a challenge. Mitonuclear discordance occurs in the small brown planthopper (SBPH), Laodelphax striatellus, with one mitochondrial haplogroup (HGI) more common in the cold climate region of China relative to another form (HGII) despite strong nuclear gene flow, providing a promising model to investigate climatic adaptation of mitochondrial genomes. We hypothesized that cold adaptation through HGI may be involved, and considered mitogenome evolution, population genetic analyses, and bioassays to test this hypothesis. In contrast to our hypothesis, chill-coma recovery tests and population genetic tests of selection both pointed to HGII being involved in cold adaptation. Phylogenetic analyses revealed that HGII is nested within HGI, and has three nonsynonymous changes in ND2, ND5 and CYTB in comparison to HGI. These molecular changes likely increased mtDNA copy number, cold tolerance and fecundity of SBPH, particularly through a function-altering amino acid change involving M114T in ND2. Nuclear background also influenced fecundity and chill recovery (i.e., mitonuclear epistasis) and protein modelling indicates possible nuclear interactions for the two nonsynonymous changes in ND2 and CYTB. The high occurrence frequency of HGI in the cold climate region of China remains unexplained, but several possible reasons are discussed. Overall, our study points to a link between mtDNA variation and organismal-level evolution and suggests a possible role of mitonuclear interactions in maintaining mtDNA diversity.


Assuntos
Evolução Molecular , Hemípteros/genética , Mitocôndrias/genética , Característica Quantitativa Herdável , Adaptação Fisiológica/genética , Animais , Tamanho Corporal/genética , DNA Mitocondrial/genética , Feminino , Fertilidade/genética , Amplificação de Genes , Genética Populacional , Genoma Mitocondrial , Geografia , Haplótipos/genética , Masculino , Filogenia , Homologia Estrutural de Proteína , Temperatura
20.
J Cell Physiol ; 233(3): 2270-2278, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28708292

RESUMO

FHOD1 is a member of Diaphanous-related formins (DRFs) which belongs to the Formin family. Previous studies have shown that the DFRs might affect several cellular functions such as morphogenesis, cytokinesis, cell polarity, and embryonic differentiation. However, there is no evidence showing the functions of FHOD1 during oocyte meiosis. This study is aimed at exploring the roles of FHOD1 during the mammalian oocyte maturation. Immunofluorescent staining showed that FHOD1 was restricted to the nucleus in germinal vesicle (GV) stage of the oocytes, after the GV breakdown FHOD1 was primarily located at two poles of the spindle at both metaphases I and II stages. Knockdown of FHOD1 by siRNA injection did not affect polar body extrusion but generated the large polar bodies. In addition, we observed the spindle migration failure in metaphase I oocytes, with a large number of meiotic spindles anchoring in the center of cytoplasm. The expression level of cytoplasmic actin but not cortex actin was significantly reduced, indicating that FHOD1 regulates cytoplasmic actin distribution for the spindle movement. Furthermore, we found that the disruption of ROCK (the Rho-dependent protein kinase) with inhibitor Y-27632 caused the decreased FHOD1 protein expression. Therefore, our data indicate that FHOD1 is regulated by ROCK for cytoplasm actin assembly and spindle migration during mouse oocyte meiosis.


Assuntos
Citoesqueleto de Actina/metabolismo , Divisão Celular Assimétrica , Proteínas Fetais/metabolismo , Meiose , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Animais , Células Cultivadas , Feminino , Proteínas Fetais/genética , Forminas , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos ICR , Proteínas Nucleares/genética , Interferência de RNA , Transdução de Sinais , Transfecção , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA