Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microb Pathog ; 158: 105118, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339795

RESUMO

Porcine circovirus type 2 (PCV2) can cause various clinical diseases in pigs, resulting in huge losses for the pig farms all over the world. In order to develop a new strategy to control PCV2, it is essential to understand its mechanisms firstly, especially PCV2 interferes with the host's innate immunity. In the present study, lncRNA and mRNA expression profiles in porcine lymphnode response to PCV2 infection were deeply sequenced and analyzed. 3271 novel lncRNAs were identified in all. 1898 mRNAs and 282 lncRNAs showed differential expression between control and PCV2-infected groups. The bioinformatics analysis including lncRNA-mRNA co-expression network construction, as well as GO and KEGG pathway analysis focused on the DEGs was carried out. The results indicated that lncRNAs might participate in PCV2 infection-induced the pathogenesis of immunosuppression through regulating the host's immune responses, biological regulation, response to stimulus, cellular component organization or biogenesis and metabolism. And these differentially expressed lncRNAs might play important roles in response to PCV2 infection in the host's innate immune system. These findings provided a large-scale survey of dysregulated lncRNAs after PCV2 infection, especially the lncRNAs responded to host's innate immune within the lymphnode. This study will provide a novel insight into the lncRNAs' functions and the possible immunosuppressive mechanism induced by PCV2 infection. However, further research will be required to verify the characteristic function of the dysregulated lncRNAs.


Assuntos
Infecções por Circoviridae , Circovirus , RNA Longo não Codificante , Doenças dos Suínos , Animais , Infecções por Circoviridae/veterinária , Circovirus/genética , Biologia Computacional , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Suínos
2.
Microb Pathog ; 152: 104640, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33232763

RESUMO

Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) causes high levels of morbidity and mortality in neonatal piglets. Owing to the abuse of antibiotics and emergence of drug resistance, antibiotics are no longer considered only beneficial, but also potentially harmful drugs. Supplements that can inhibit the growth of bacteria are expected to replace antibiotics. Tea polyphenols have numerous important biological functions, including antibacterial, antiviral, antioxidative, anti-inflammatory, and antihypertensive effects. We investigated the role of tea polyphenols in ETEC K88 infection using a mouse model. Pretreating with tea polyphenols attenuated the symptoms induced by ETEC K88. Furthermore, in a cell adherence assay, tea polyphenols inhibited ETEC K88 adherence to IPEC-J2 cells. When cells were infected with ETEC K88, mRNA and protein levels of claudin-1 were significantly decreased compared with those of control cells. However, when cells were pretreated with tea polyphenols, claudin-1 mRNA and protein levels were higher than those in cells without pretreatment upon cell infection with ETEC K88. TLR2 mRNA levels were also higher following cell infection with ETEC K88 when cells were pretreated with tea polyphenols. These data revealed that tea polyphenols could increase the barrier integrity of IPEC-J2 cells by upregulating expression of claudin-1 through activation of TLR2. Tea polyphenols had beneficial effects on epithelial barrier function. Therefore, tea polyphenols could be used as a novel strategy to control and treat pig infections caused by ETEC K88.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Animais , Infecções por Escherichia coli/tratamento farmacológico , Polifenóis/farmacologia , Suínos , Chá , Virulência
3.
Microb Pathog ; 143: 104133, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32169486

RESUMO

Bacillus cereus (B. cereus) is widely distributed in the environment. It is one of the most common opportunistic food-borne pathogens associated with food poisoning, not only being majorly reported to cause fatal infections of the gastrointestinal tract, but also responsible for abdominal distress and vomiting. The current study was undertaken to evaluate the biological characteristics and the genetic evolution of B. cereus isolated from infected organs of dead Elaphurus davidianus (E. davidianus). B. cereus was characterized through antibiotic sensitivity tests, mouse lethality assay, whole genome sequencing analysis, and genome annotation. The results revealed that the isolated B. cereus strain was highly resistant to rifampicin, lincomycin, sulfamethoxazole, erythromycin, and ampicillin, with a high pathogenicity phenotype. KEGG annotation revealed that "metabolic pathways" had the largest number of unigenes, followed by "biosynthesis of secondary metabolites" and "biosynthesis of antibiotics". GO analysis resulted in 8039 unigenes categorized. Meanwhile, 54,779 unigenes were annotated and grouped into 23 categories based on COG functional classifications. Moreover, one gene (codY) was found to be related to the host in conformity with the analysis done on PHI-base. Other tests led to the identification of 16 B. cereus virulence factor genes and five resistance types, with potential resistance against bacitracin, penicillin, and fosfomycin. We isolated a highly drug-resistant and pathogenic B. cereus strain from E. davidianus, showing that a variety of antimicrobial drugs should be avoided in clinical treatments. Furthermore, to the best of our knowledge, this is the first study to report whole genome sequencing of a emergence of food-borne B. cereus strain isolated from E. davidianus deer; it will be helpful to extensively investigate the genetic and molecular mechanisms of drug resistance and pathogenesis about B. cereus in both humans and animals.


Assuntos
Bacillus cereus/genética , Cervos/microbiologia , Evolução Molecular , Animais , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/patogenicidade , Farmacorresistência Bacteriana/genética , Feminino , Genoma Bacteriano/genética , Camundongos , Testes de Sensibilidade Microbiana , Virulência/genética , Sequenciamento Completo do Genoma
4.
Crit Rev Eukaryot Gene Expr ; 29(1): 69-76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002596

RESUMO

Pulmonary arterial hypertension (PAH), also known as broilers ascites syndrome, is characterized by hypoxia, pulmonary artery pressure, and right heart failure. However, less information is available about the molecular mechanisms of PAH. We evaluated the mediation of calcium-sensing receptor by inducing hypoxia for the possible proliferation of pulmonary artery smooth muscle cells via the G protein pathway. For this purpose, we used an in vitro trial of chicken cell culture and confirmed our results by using immunohistochemistry, immunofluorescence staining, quantitative real-time polymerase chain reaction assay, and Western blotting analysis. Our results showed that the mRNA and protein expression levels of calcium-sensing receptor (CaSR) were significantly upregulated in cells when co-incubated with CaCl2. However, the levels of mRNA and protein were obviously decreased when supplemented with blocking agents (NiCl2, 2-APB, and D609). Furthermore, the experimentally induced hypoxia also upregulated the expression of CaSR gene as compared to CaSR gene expression in control cells. Together, these results indicate that hypoxia plays an important role in the expression of CaSR gene in pulmonary artery smooth muscle cells and reveals new targets for the CaSR excited hypothesis to prevent and control PAH in chickens.


Assuntos
Hipóxia Celular , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais , Animais , Galinhas/metabolismo , Galinhas/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Miócitos de Músculo Liso/fisiologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/veterinária , Artéria Pulmonar/fisiopatologia
5.
BMC Infect Dis ; 19(1): 778, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488066

RESUMO

BACKGROUND: A diagnostic method to simultaneously detect and discriminate porcine circovirus type 1 (PCV1), porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3) in clinical specimens is imperative for the differential diagnosis and monitoring and control of PCVs in the field. METHODS: Three primer pairs were designed and used to develop a multiplex PCR assay. And 286 samples from 8 farms in Hubei province were tested by the developed multiplex PCR assay to demonstrate the accuracy. RESULTS: Each of target genes of PCV1, PCV2 and PCV3 was amplified using the designed primers, while no other porcine viruses genes were detected. The limit of detection of the assay was 10 copies/µL of PCV1, PCV2 OR PCV3. The results of the tissue samples detection showed that PCV1, PCV2 and PCV3 are co-circulating in central China. The PCV1, PCV2 and PCV3 singular infection rate was 52.4% (150/286), 61.2% (175/286) and 45.1% (129/286), respectively, while the PCV1 and PCV2 co-infection rate was 11.2% (32/286), the PCV1 and PCV3 co-infection rate was 5.9% (17/286), the PCV2 and PCV3 co-infection rate was 23.4% (67/286), and the PCV1, PCV2 and PCV3 co-infection rate was 1.7% (5/286), respectively, which were 100% consistent with the sequencing method and real-time PCR methods. CONCLUSIONS: The multiplex PCR assay could be used as a differential diagnostic tool for monitoring and control of PCVs in the field. The results also indicate that the PCVs infection and their co-infection are severe in Hubei province, Central China.


Assuntos
Infecções por Circoviridae/diagnóstico , Circovirus/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Animais , China , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/classificação , Circovirus/genética , Diagnóstico Diferencial , Genes Virais , Incidência , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/epidemiologia , Virologia/métodos
6.
Microb Pathog ; 122: 151-155, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29894809

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea and dehydration in new-born piglets with subsequent economic losses to swine industry. In the current study, gene encoding of 381aa-792aa spike protein (S1) with the main epitope relative to virus neutralization of PEDV was amplified by RT-PCR and inserted into vector pET-30A(+). The plasmid was transferred into Escherichia coli BL21 (DE3). Meanwhile, recombinant protein expression was induced by isopropy1-ß-galactopyranoside (IPTG). After denaturation and renaturation of inclusion bodies, the S1 protein was obtained by using purified recombinant S1 protein in immunized female BALB/c mice. Monoclonal antibodies (MAb) against S1 protein, named 4C7 by hybridoma technique were gained successfully. The result showed that MAb can specifically respond to S1 protein and PEDV via ELISA, Western bolt and immunofluorescence assay methods. A sandwich ELISA (S-ELISA) was established by using the captured monoclonal antibodies 4C7. The sensitivity and specificity were compared between S-ELISA and RT-PCR, which showed similar sensitivity and specificity. This work indicated that S-ELISA would be a significant tool alongside a specific diagnostic reagent for PEDV in future.


Assuntos
Infecções por Coronavirus/veterinária , Testes Diagnósticos de Rotina/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Fezes/virologia , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Western Blotting , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos
7.
Microb Pathog ; 104: 137-145, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28093234

RESUMO

Streptococcus suis serotype 2 is a major zoonotic pathogen, and the two-component system plays an important role in bacterial pathogenesis. The present study targeted the 1910HK/RR two-component system of S. suis 2. A 1910HK/RR deletion mutant (Δ1910HK/RR) and the corresponding complementation strain (CΔ1910HK/RR) were constructed in S. suis 2 strain 05ZYH33. 1910HK/RR deletion had no effect on S. suis 2 growth, but significantly inhibited the adherence and invasion of S. suis 2 to HEp-2 cells. Analysis of the role of 1910HK/RR in murine and pig infection models demonstrated that 1910HK/RR played a distinct role in the virulence of S. suis 2. In addition, deletion of 1910HK/RR significantly impaired the survival of 05ZYH33 in human blood. These data provided important insights into the pathogenesis of S. suis 2.


Assuntos
Ilhas Genômicas , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Animais , Aderência Bacteriana/genética , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Ordem dos Genes , Teste de Complementação Genética , Loci Gênicos , Genoma Bacteriano , Humanos , Camundongos , Viabilidade Microbiana , Deleção de Sequência , Sorogrupo , Infecções Estreptocócicas/mortalidade , Infecções Estreptocócicas/patologia , Streptococcus suis/classificação , Streptococcus suis/crescimento & desenvolvimento , Suínos , Virulência/genética
8.
Arch Virol ; 156(4): 685-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21161554

RESUMO

In a previous study, we performed serial brain-to-brain passages of swine Japanese encephalitis virus in mice and sequenced the complete genomes of the F5 and F20 passaged mouse-adapted variants. In the current study, we analyzed the differences between their genome sequences and found 12 amino acid substitutions in the nonstructural proteins. We also assessed the growth characteristics of these two variants in mammalian cells in vitro and in vivo. Our investigations revealed that the F20 variant had enhanced growth characteristics and modified virulence compared with the F5 variant. We therefore conclude that multiple amino acid substitutions in the nonstructural proteins of swine Japanese encephalitis virus alter its virulence in mice.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/veterinária , Mutação de Sentido Incorreto , Doenças dos Suínos/virologia , Proteínas não Estruturais Virais/genética , Adaptação Biológica , Animais , Peso Corporal , Análise Mutacional de DNA , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/virologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Viral/genética , Inoculações Seriadas , Análise de Sobrevida , Suínos , Virulência
9.
PeerJ ; 8: e10114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150069

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a leading cause of diarrhea in pigs worldwide. Virus isolation and genetic evolutionary analysis allow investigations into the prevalence of epidemic strains and provide data for the clinical diagnosis and vaccine development. In this study, we investigated the genetic characteristics of PEDV circulation in Asia through virus isolation and comparative genomics analysis. APEDV strain designated HB2018 was isolated from a pig in a farm experiencing a diarrhea outbreak. The complete genome sequence of HB2018 was 28,138 bp in length. Phylogenetic analysis of HB2018 and 207 PEDVs in Asia showed that most PEDV strains circulating in Asia after 2010 belong to genotype GII, particularly GII-a. The PEDV vaccine strain CV777 belonged to GI, and thus, unmatched genotypes between CV777 and GII-a variants might partially explain incomplete protection by the CV777-derived vaccine against PEDV variants in China. In addition, we found the S protein of variant strains contained numerous mutations compared to the S protein of CV777, and these mutations occurred in the N-terminal domain of the S protein. These mutations may influence the antigenicity, pathogenicity, and neutralization properties of the variant strains.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31179247

RESUMO

Streptococcus suis is an important pathogen in pigs and can also cause severe infections in humans. However, little is known about proteins associated with cell growth and pathogenicity of S. suis. In this study, a guanosine triphosphatase (GTPase) MnmE homolog was identified in a Chinese isolate (SC19) that drives a tRNA modification reaction. A mnmE deletion strain (ΔmnmE) and a complementation strain (CΔmnmE) were constructed to systematically decode the characteristics and functions of MnmE both in vitro and in vivo studies via proteomic analysis. Phenotypic analysis revealed that the ΔmnmE strain displayed deficient growth, attenuated pathogenicity, and perturbation of the arginine metabolic pathway mediated by the arginine deiminase system (ADS). Consistently, tandem mass tag -based quantitative proteomics analysis confirmed that 365 proteins were differentially expressed (174 up- and 191 down-regulated) between strains ΔmnmE and SC19. Many proteins associated with DNA replication, cell division, and virulence were down-regulated. Particularly, the core enzymes of the ADS were significantly down-regulated in strain ΔmnmE. These data also provide putative molecular mechanisms for MnmE in cell growth and survival in an acidic environment. Therefore, we propose that MnmE, by its function as a central tRNA-modifying GTPase, is essential for cell growth, pathogenicity, as well as arginine metabolism of S. suis.


Assuntos
Arginina/metabolismo , GTP Fosfo-Hidrolases/metabolismo , RNA de Transferência/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/metabolismo , Amônia/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Hidrolases/metabolismo , Redes e Vias Metabólicas , Camundongos , Fenótipo , Proteômica , Streptococcus suis/genética , Streptococcus suis/crescimento & desenvolvimento , Streptococcus suis/patogenicidade , Transcriptoma , Virulência/genética
11.
Int J Clin Exp Pathol ; 10(7): 8000-8009, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31966652

RESUMO

Altered microRNA (miRNAs) expression has been reported in chordoma which has been considered as an important and complex disease. The study aims to explore the mechanism of miR-31-5p in chordoma in vitro. We firstly verified miR-31-5p level after mimics transfection using real-time PCR and found over-expressed miR-31-5p could inhibit cell growth and invasive ability, while induce cell apoptosis in vitro as detected by CCK8 assay, flow cytometry assay and transwell assay, respectively. Based on prediction result in silico, we validated the target gene C-met using dual-luciferase assay and detected the alternation of miR-31-5p as evidence. Using recombinant plasmid, we also found over-expressed c-Met could reduce the effect of over-expressed miR-31-5p on cell growth, cell cycle change, cell apoptosis and invasive ability as detected by CCK8 assay, flow cytometry assay and transwell assay respectively. Meanwhile, it was also appeared that the PI3K/AKT signaling pathway relevant proteins had alternation through WB assays in U-CH1 cells with treatment of miR-31-5p and c-met recombinant plasmid. miR-31-5p may play a protective role in chordoma patients by targeting c-met and then activating PI3K/AKT signaling pathway which suggested that alterations of miR-31-5p might be a useful biomarker and a potential therapy for early detection of chordoma as disease-related molecular and genetic changes.

12.
Viruses ; 9(8)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763016

RESUMO

Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses in China. The attenuated vaccine (HP-PRRSV JXA1-R) was used to control HP-PRRSV. However, in recent years, co-infection with classical PRRSV (C-PRRSV), HP-PRRSV, and/or HP-PRRSV JXA1-R has been increasing in China, resulting in a significant impact on PRRSV diagnostics and management. To facilitate rapid discrimination of HP-PRRSV JXA1-R from HP-PRRSV and C-PRRSV, a multiplex RT-PCR assay for the visual detection of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV was established and evaluated with reference PRRSV strains and clinical samples. Primer specificities were evaluated with RNA/DNA extracted from 10 viral strains, and our results revealed that the primers had a high specificity for PRRSV. The assay sensitivity was 24 copies/µL for PRRSVs. A total of 516 serum samples were identified, of which 12.21% (63/516) were HP-PRRSV-positive, 2.33% (12/516) were HP-PRRSV JXA1-R-positive, and 1.16% (6/516) were C-PRRSV-positive, respectively, which was completely consistent with the sequencing method. The high specificity, sensitivity, and reliability of the multiplex RT-PCR assay described in this study indicate that it is useful for the rapid and differential diagnosis of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Animais , China , Coinfecção/virologia , Primers do DNA , Diagnóstico Diferencial , Técnicas de Diagnóstico Molecular , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Suínos
13.
Gene ; 531(2): 199-204, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24035936

RESUMO

Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses and, subsequently, have drawn great attention to its diagnosis and prevention. To facilitate rapid discrimination of HP-PRRSV from classical PRRSV (C-PRRSV), we developed a one-step RT-PCR assay. Primer specificities were evaluated with RNA extracted from 8 viral strains and our results revealed that the primers had a high specificity for PRRSV. The assay sensitivity was 25 copies/µL for both HP-PRRSV and C-PRRSV. A total of 929 serum samples were identified, of which 20.45% were HP-PRRSV-positive and 1.51% were C-PRRSV-positive, which was completely consistent with that of immunochromatochemistry and sequencing method. The proposed assay can detect the virus 2 days prior the onset of symptoms and it can be performed in 2h, thereby providing a rapid method to discriminate HP-PRRSV from C-PRRSV for the identification and prevention of PRRSV infections.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Vírus de DNA/genética , Diagnóstico Diferencial , Síndrome Respiratória e Reprodutiva Suína/sangue , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Sensibilidade e Especificidade , Suínos/sangue , Suínos/virologia , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA