Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 165: 662-670, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30245300

RESUMO

Samarium (Sm) and yttrium (Y) are commonly used rare earth elements (REEs) but there is a scarcity of information concerning their biological effects in non-target aquatic organisms. The purpose of this study was to determine the bioavailability of those REEs and their toxicity on Dreissena polymorpha after exposure to increasing concentration of Sm and Y for 28 days at 15 °C. At the end of the exposure period, the gene expression of superoxide dismutase (SOD), catalase (CAT), metallothionein (MT), glutathione-S-transferase (GST), cytochrome c oxidase 1 (CO1) and cyclin D (Cyc D) were analysed. In addition, we examined lipid peroxidation (LPO), DNA strand breaks (DSB), GST and prostaglandin cyclooxygenase (COX) activities. Results showed a concentration dependent increase in the level of the REEs accumulated in the soft tissue of mussels. Both REEs decreased CAT but did not significantly modulated SOD and MT expressions. Furthermore, Sm3+ up-regulated GST, CO1 and Cyc D, while Y3+ increased and decreased GST and CO1 transcripts levels, respectively. Biomarker activities showed no oxidative damage as evidenced by LPO, while COX activity was decreased and DNA strand breaks levels were changed suggesting that Sm and Y exhibit anti-inflammatory and genotoxic effects. Factorial analysis revealed that the major impacted biomarkers by Sm were LPO, CAT, CO1 and COX, while GST gene expression, COX, Cyc D and CAT as the major biomarkers affected by Y. We conclude that these REEs display different mode of action but further investigations are required in order to define the exact mechanism involved in their toxicity.


Assuntos
Dreissena/efeitos dos fármacos , Samário/toxicidade , Poluentes Químicos da Água/toxicidade , Ítrio/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Dano ao DNA , Dreissena/metabolismo , Água Doce/química , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Metalotioneína/metabolismo , Samário/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo , Ítrio/metabolismo
2.
J Glob Antimicrob Resist ; 24: 335-339, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33540083

RESUMO

OBJECTIVES: Ceftobiprole is an advanced-generation cephalosporin with a favourable safety profile. Published data on the clinical use of ceftobiprole are limited. We report use of ceftobiprole in Canadian patients using data captured by the CLEAR registry. METHODS: The CLEAR registry uses the web-based research data management program REDCap™ (online survey) to facilitate clinicians entering details associated with their clinical experiences using ceftobiprole. RESULTS: Data were available for 38 patients treated with ceftobiprole. The most common infections treated were endocarditis (42.1% of patients), bone and joint infection (23.7%) and hospital-associated bacterial pneumonia (15.8%). 92.1% of patients had bacteraemia and 21.1% were in intensive care. Ceftobiprole was used because of failure of (71.1%), resistance to (18.4%) or adverse effects from (10.5%) previously prescribed antimicrobial agents. Ceftobiprole was primarily used as directed therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections (94.7% of patients). Ceftobiprole susceptibility testing was performed on isolates from 47.4% of patients. It was used concomitantly with daptomycin in 55.3% of patients and with vancomycin in 18.4% of patients. Treatment duration was primarily >10 days (65.8% of patients) with microbiological success in 97.0% and clinical success in 84.8% of patients. 2.6% of patients had gastrointestinal adverse effects. CONCLUSION: In Canada to date, ceftobiprole is used as directed therapy to treat a variety of severe infections caused by MRSA. It is primarily used in patients failing previous antimicrobials, is frequently added to, and thus used in combination with daptomycin or vancomycin with high microbiological and clinical cure rates and an excellent safety profile.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/uso terapêutico , Canadá , Cefalosporinas/uso terapêutico , Humanos , Sistema de Registros
3.
J Glob Antimicrob Resist ; 25: 346-350, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33984530

RESUMO

OBJECTIVES: Ceftolozane/tazobactam is a cephalosporin/ß-lactamase inhibitor combination with activity against Gram-negative bacilli. Here we report the use of ceftolozane/tazobactam in Canada using a national registry. METHODS: The CLEAR registry uses a REDCapTM online survey to capture details associated with clinical use of ceftolozane/tazobactam. RESULTS: Data from 51 patients treated in 2020 with ceftolozane/tazobactam are available. Infections treated included hospital-acquired bacterial pneumonia (37.3% of patients), ventilator-associated bacterial pneumonia (15.7%), bone and joint infection (11.8%), complicated intra-abdominal infection (7.8%) and complicated skin and skin-structure infection (7.8%). Moreover, 17.6% of patients had bacteraemia and 47.1% were in intensive care. Ceftolozane/tazobactam was primarily used as directed therapy for Pseudomonas aeruginosa infections (92.2% of patients). Ceftolozane/tazobactam was used because of resistance to (86.3%), failure of (11.8%) or adverse effects from (2.0%) previously prescribed antimicrobials. Ceftolozane/tazobactam susceptibility testing was performed on isolates from 88.2% of patients. Ceftolozane/tazobactam was used in combination with another antimicrobial active against Gram-negative bacilli in 39.2% of patients [aminoglycosides (15.7%), fluoroquinolones (9.8%) and colistin/polymyxin B (7.8%)]. The dosage regimen was customised in all patients based on creatinine clearance. The treatment duration was primarily >10 days (60.8% of patients), with microbiological success in 60.5% and clinical success in 64.4% of patients. Moreover, 7.8% of patients had adverse effects not requiring drug discontinuation. CONCLUSION: In Canada, ceftolozane/tazobactam is used as directed therapy to treat a variety of severe infections caused by multidrug-resistant P. aeruginosa. It is commonly used in combination with other antimicrobials with relatively high microbiological/clinical cure rates and an excellent safety profile.


Assuntos
Cefalosporinas , Liderança , Antibacterianos/uso terapêutico , Canadá , Cefalosporinas/uso terapêutico , Humanos , Sistema de Registros , Tazobactam
4.
Cancer Res ; 78(19): 5561-5573, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30072396

RESUMO

Intrinsic and acquired resistance to cisplatin remains a primary hurdle to treatment of high-grade serous ovarian cancer (HGSOC). Cisplatin selectively kills tumor cells by inducing DNA crosslinks that block replicative DNA polymerases. Single-stranded DNA (ssDNA) generated at resulting stalled replication forks (RF) is bound and protected by heterotrimeric replication protein A (RPA), which then serves as a platform for recruitment and activation of replication stress response factors. Cells deficient in this response are characterized by extensive ssDNA formation and excessive RPA recruitment that exhausts the available pool of RPA, which (i) inhibits RPA-dependent processes such as nucleotide excision repair (NER) and (ii) causes catastrophic failure of blocked RF. Here, we investigated the influence of RPA availability on chemosensitivity using a panel of human HGSOC cell lines. Our data revealed a striking correlation among these cell lines between cisplatin sensitivity and the inability to efficiently repair DNA via NER, specifically during S phase. Such defects in NER were attributable to RPA exhaustion arising from aberrant activation of DNA replication origins during replication stress. Reduced RPA availability promoted Mre11-dependent degradation of nascent DNA at stalled RF in cell lines exhibiting elevated sensitivity to cisplatin. Strikingly, defective S-phase NER, RF instability, and cisplatin sensitivity could all be rescued by ectopic overexpression of RPA. Taken together, our findings indicate that RPA exhaustion represents a major determinant of cisplatin sensitivity in HGSOC cell lines.Significance: The influence of replication protein A exhaustion on cisplatin sensitivity harbors important implications toward improving therapy of various cancers that initially respond to platinum-based agents but later relapse due to intrinsic or acquired drug resistance. Cancer Res; 78(19); 5561-73. ©2018 AACR.


Assuntos
Cisplatino/farmacologia , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteína de Replicação A/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , DNA de Cadeia Simples/genética , Feminino , Humanos , RNA Interferente Pequeno/metabolismo
5.
Aquat Toxicol ; 190: 142-149, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28711770

RESUMO

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphate ester used as substitute following the phase-out of brominated flamed retardants. Because of its high production volume and its use in a broad range of applications, this chemical is now frequently detected in the environment and biota. However, limited information is available on the long-term effects of TBOEP in aquatic organisms. In this study, Daphnia magna were exposed over three 21d generations to an environmentally relevant concentration of TBOEP (10µg/L) and effects were evaluated at the gene transcription, protein, and life-history (i.e., survival, reproduction and growth) levels. Chronic exposure to TBEOP did not impact survival or reproduction of D. magna but affected the growth output. The mean number of molts was also found to be lower in daphnids exposed to the chemical compared to control for a given generation, however there were no significant differences over the three generations. Molecular responses indicated significant differences in the transcription of genes related to growth, molting, ecdysteroid and juvenile hormone signaling, proteolysis, oxidative stress, and oxygen transport within generations. Levels of mRNA were also found to be significantly different for genes known to be involved in endocrine-mediated mechanisms such as reproduction and growth between generations F0, F1, and F2, indicating effects of parental exposure on offspring. Transcription results were supported by protein analyses with the significant decreased in catalase (CAT) activity in F1 generation, following the decreased transcription of cat in the parental generation. Taken together, these multi-biological level results suggest long-term potential endocrine disruption effects of TBOEP in D. magna exposed to an environmentally relevant concentration. This study highlights the importance of using chronic and multigenerational biological evaluation to assess risks of emerging chemicals.


Assuntos
Daphnia/efeitos dos fármacos , Retardadores de Chama/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/genética , Daphnia/crescimento & desenvolvimento , Sistema Endócrino/efeitos dos fármacos , Estágios do Ciclo de Vida/genética , Reprodução/efeitos dos fármacos , Reprodução/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA