Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurosurg Rev ; 47(1): 73, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296852

RESUMO

Stereotactic radiosurgery (SRS) is one of the surgical alternatives for drug-resistant essential tremor (ET). Here, we aimed at evaluating whether biologically effective dose (BEDGy2.47) is relevant for tremor improvement after stereotactic radiosurgical thalamotomy in a population of patients treated with one (unplugged) isocenter and a uniform dose of 130 Gy. This is a retrospective longitudinal single center study. Seventy-eight consecutive patients were clinically analyzed. Mean age was 69.1 years (median 71, range 36-88). Mean follow-up period was 14 months (median 12, 3-36). Tremor improvement was assessed at 12 months after SRS using the ET rating assessment scale (TETRAS, continuous outcome) and binary (binary outcome). BED was defined for an alpha/beta of 2.47, based upon previous studies considering such a value for the normal brain. Mean BED was 4573.1 Gy2.47 (median 4612, 4022.1-4944.7). Mean beam-on time was 64.7 min (median 61.4; 46.8-98.5). There was a statically significant correlation between delta (follow-up minus baseline) in TETRAS (total) with BED (p = 0.04; beta coefficient - 0.029) and beam-on time (p = 0.03; beta coefficient 0.57) but also between TETRAS (ADL) with BED (p = 0.02; beta coefficient 0.038) and beam-on time (p = 0.01; beta coefficient 0.71). Fractional polynomial multivariate regression suggested that a BED > 4600 Gy2.47 and a beam-on time > 70 min did not further increase clinical efficacy (binary outcome). Adverse radiation events (ARE) were defined as larger MR signature on 1-year follow-up MRI and were present in 7 out of 78 (8.9%) cases, receiving a mean BED of 4650 Gy2.47 (median 4650, range 4466-4894). They were clinically relevant with transient hemiparesis in 5 (6.4%) patients, all with BED values higher than 4500 Gy2.47. Tremor improvement was correlated with BED Gy2.47 after SRS for drug-resistant ET. An optimal BED value for tremor improvement was 4300-4500 Gy2.47. ARE appeared for a BED of more than 4500 Gy2.47. Such finding should be validated in larger cohorts.


Assuntos
Tremor Essencial , Radiocirurgia , Humanos , Idoso , Tremor/etiologia , Tremor/cirurgia , Tremor Essencial/cirurgia , Tremor Essencial/etiologia , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Tálamo/cirurgia , Resultado do Tratamento
2.
Diagnostics (Basel) ; 13(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37046543

RESUMO

A comparison was made between the image quality of a photon-counting CT (PCCT) and a dual-source CT (DSCT). The evaluation of image quality was performed using a Catphan CT phantom, and the physical metrics, such as the noise power spectrum and task transfer function, were measured for both PCCT and DSCT at three CT dose indices (1, 5 and 10 mGy). Polyenergetic and virtual monoenergetic reconstructions were used to evaluate the performance differences by simulating a Gaussian spot with a radius of 5 mm and calculating the detectability index. The highest iterative reconstruction level was able to decrease the noise by about 70% compared with the filtered back projection using a parenchyma reconstruction kernel. The PCCT task transfer functions remained constant, while those of the DSCT increased with the reconstruction strength level. At monoenergetic 70 keV, a 50% decrease in noise was observed for DSCT with image smoothing, while PCCT had the same 50% decrease in noise without any smoothing. The PCCT detectability index at a reconstruction strength level of two was equivalent to the highest level of ADMIRE 5 for DSCT. The PCCT showed its superiority over the DSCT, especially for lung nodule detection.

3.
Phys Med ; 89: 193-199, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34392102

RESUMO

PURPOSE: The dose calculated using a convolution algorithm should be validated in a simple homogeneous water-equivalent phantom before clinical use. The dose calculation accuracy within a solid water phantom was investigated. METHODS: The specific Gamma knife design requires a dose rate calibration within a spherical solid water phantom. The TMR10 algorithm, which approximates the phantom material as liquid water, correctly computes the absolute dose in water. The convolution algorithm, which considers electron density miscalculates the dose in water as the phantom Hounsfield units were converted into higher electron density when the original CT calibration curve was used. To address this issue, the electron density of liquid water was affected by modifying the CT calibration curve. The absolute dose calculated using the convolution algorithm was compared with that computed by the TMR10. The measured depth dose profiles were also compared to those computed by the convolution and TMR10 algorithms. A patient treatment was recalculated in the solid-water phantom and the delivery quality assurance was checked. RESULTS: The convolution algorithm and the TMR10 calculate an absolute dose within 1% when using the modified CT calibration curve. The dose depth profile calculated using the convolution algorithms was superimposed on the TMR10 and measured dose profiles when the modified CT calibration curve was applied. The Gamma index was better than 93%. CONCLUSIONS: Dose calculation algorithms, which consider electron density, require a CT calibration curve adapted to the phantom material to correctly compute the dose in water.


Assuntos
Radiocirurgia , Água , Algoritmos , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Phys Med Biol ; 65(15): 155012, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32392548

RESUMO

The new Leksell Gamma knife convolution algorithm requires evaluation prior to implementation in clinical practice. The superiority of this algorithm, which takes into account tissue electron densities, was evaluated using EBT3 GafChromicTM films within an anthropomorphic phantom. The CIRS anthropomorphic head phantom was chosen for its relevance to validate the convolution algorithm. Absolute dose and dose distributions were measured and compared with the outputs calculated from the Leksell Gamma Plan algorithms (TMR10 and the convolution algorithm). The measured absolute dose and the dose distributions in the homogeneous region of the anthropomorphic phantom were clearly in agreement with the dose distribution computed by the convolution algorithm. In a heterogeneous region where soft tissues contain a medium, such as aluminium, or an air gap, the measured dose profiles drastically changed, and only the convolution algorithm was able to correctly compute the dose to water in water. The convolution algorithm was able to take into account regions with high or very low electron densities such that the measured absolute dose was nearly equal to that computed by the convolution algorithm, with a common accepted dose measurement error of 2%.


Assuntos
Algoritmos , Radiocirurgia/métodos , Alumínio , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Água
5.
Onkologie ; 32(4): 209-15, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19372719

RESUMO

In the field of radiation oncology, equipment for fractionated radiotherapy and single-dose radiosurgery has become increasingly accurate, together with the introduction of robotized treatments. A robot is a device that can be programmed to carry out accurate, repeated and adjusted tasks in a given environment. Treatment of extracranial lesions involves taking into account organ mobility (tumor and healthy tissue) whilst retaining the ability to stereotactically locate the target. New imaging techniques (single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), positron emission tomography (PET)) provide further relevant information to slice images (computed tomography (CT) scans, MRI) for target definition. Hypo-fractionated treatments can only be used for curative treatment if the target is accurately defined and tracked during treatment. The CyberKnife is a non-invasive system of radiosurgery and fractionated stereotactic radiotherapy. For intracranial lesions treated by single-dose radiosurgery, it has been used to treat meningioma, acoustic neuromas, pituitary adenoma, metastases, arteriovenous malformations and refractory pain (trigeminal neuralgia). More than 10,000 patients have been treated worldwide. Currently, the most significant developments are in the field of extracranial stereotactic radiotherapy (lung, liver, reirradiation, prostate, etc.). Clinical results obtained in the CyberKnife Nord-Ouest program after 1 year of experience are presented.


Assuntos
Neoplasias Encefálicas/cirurgia , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Robótica/métodos , Cirurgia Assistida por Computador/métodos , Desenho de Equipamento , Humanos , Projetos Piloto , Resultado do Tratamento
6.
Phys Med ; 45 Suppl 1: S3-S4, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29413852

RESUMO

INTRODUCTION: This work describes the clinical implementation of a Monte Carlo based platform for treatment plan validation for Tomotherapy and Cyberknife, including a semi-automatic plan evaluation module based on dose constraints for organs-at-risk (OAR). METHODS: The Monte Carlo-based platform Moderato [1] is based on BEAMnrc/DOSXYZnrc and allows for automated re-calculation of doses planned with Tomotherapy and Cyberknife techniques. The Prescription/Validation module generates a set of dose constraints based on the anatomical region and fractionation scheme considered. Upon achievement of the planning, dose results are displayed with visual warnings in case of constraint violation. The system was tested on 83 patient cases in order to evaluate the influence of difference in calculation algorithms on OAR constraints. RESULTS: The first results with the Tomotherapy plans allowed for detecting and correcting a problem with the CT Hounsfield units when using a large reconstruction diameter (a CT artifact that lead to air voxels with an overestimated density). The Cyberknife results also showed some dose differences associated with different energy thresholds between Moderato and the Monte Carlo algorithm used in the Treatment Planning Station. Regarding OAR constraints, re-calculation generated few violations in thoracic, pelvic and abdominal cases. However, in spinal and head cases, significant differences can appear (-11% to +6%) on optic pathways and spinal cord, leading to doses above the limits. CONCLUSIONS: The Moderato platform constitutes a promising tool for the validation of plan quality, offering both dose re-calculation and OAR constraints evaluation. First results show the importance of this verification for some specific regions. Further work is ongoing to optimize the quantity and relevance of the information displayed, before fully introducing the system in clinical routine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA