Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(9): 2114-2119, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440412

RESUMO

Plasmodium falciparum causes the most lethal form of human malaria and is a global health concern. The parasite responds to antimalarial therapies by developing drug resistance. The continuous development of new antimalarials with novel mechanisms of action is a priority for drug combination therapies. The use of transition-state analog inhibitors to block essential steps in purine salvage has been proposed as a new antimalarial approach. Mutations that reduce transition-state analog binding are also expected to reduce the essential catalytic function of the target. We have previously reported that inhibition of host and P. falciparum purine nucleoside phosphorylase (PfPNP) by DADMe-Immucillin-G (DADMe-ImmG) causes purine starvation and parasite death in vitro and in primate infection models. P. falciparum cultured under incremental DADMe-ImmG drug pressure initially exhibited increased PfPNP gene copy number and protein expression. At increased drug pressure, additional PfPNP gene copies appeared with point mutations at catalytic site residues involved in drug binding. Mutant PfPNPs from resistant clones demonstrated reduced affinity for DADMe-ImmG, but also reduced catalytic efficiency. The catalytic defects were partially overcome by gene amplification in the region expressing PfPNP. Crystal structures of native and mutated PfPNPs demonstrate altered catalytic site contacts to DADMe-ImmG. Both point mutations and gene amplification are required to overcome purine starvation induced by DADMe-ImmG. Resistance developed slowly, over 136 generations (2136 clonal selection). Transition-state analog inhibitors against PfPNP are slow to induce resistance and may have promise in malaria therapy.


Assuntos
Adenosina/análogos & derivados , Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/enzimologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Pirrolidinas/farmacologia , Adenosina/farmacologia , Resistência a Medicamentos , Genômica , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Mutação Puntual , Conformação Proteica
2.
Molecules ; 25(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168746

RESUMO

Roughly a third of the world's population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.


Assuntos
Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/efeitos dos fármacos , Ácido Chiquímico/antagonistas & inibidores , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/microbiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Relação Estrutura-Atividade , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
3.
Biochemistry ; 56(48): 6368-6376, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29131588

RESUMO

Plasmodium falciparum parasites are purine auxotrophs that rely exclusively on the salvage of preformed purines from their human hosts to supply the requirement for purine nucleotides. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) catalyzes the freely reversible Mg2+-dependent conversion of 6-oxopurine bases to their respective nucleotides and inorganic pyrophosphate. The phosphoribosyl group is derived from 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP). The enzyme from malaria parasites (PfHGXPRT) is essential as hypoxanthine is the major precursor in purine metabolism. We used specific heavy atom labels in PRPP and hypoxanthine to measure primary (1-14C and 9-15N) and secondary (1-3H and 7-15N) intrinsic kinetic isotope effect (KIE) values for PfHGXPRT. Intrinsic isotope effects contain information for understanding enzymatic transition state properties. The transition state of PfHGXPRT was explored by matching KIE values predicted from quantum mechanical calculations to the intrinsic values determined experimentally. This approach provides information about PfHGXPRT transition state bond lengths, geometry, and atomic charge distribution. The transition state structure of PfHGXPRT was determined in the physiological direction of addition of ribose 5-phosphate to hypoxanthine by overcoming the chemical instability of PRPP. The transition state for PfHGXPRT forms nucleotides through a well-developed and near-symmetrical DN*AN, SN1-like transition state.


Assuntos
Pentosiltransferases/metabolismo , Plasmodium falciparum/enzimologia , Regulação Enzimológica da Expressão Gênica , Isótopos , Cinética , Espectrometria de Massas , Pentosiltransferases/genética , Conformação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Anal Chem ; 88(23): 11860-11867, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27779859

RESUMO

5'-Methylthioadenosine phosphorylase (MTAP) and 5'-methylthioadenosine nucleosidase (MTAN) catalyze the phosphorolysis and hydrolysis of 5'-methylthioadenosine (MTA), respectively. Both enzymes have low KM values for their substrates. Kinetic assays for these enzymes are challenging, as the ultraviolet absorbance spectra for reactant MTA and product adenine are similar. We report a new assay using 2-amino-5'-methylthioadenosine (2AMTA) as an alternative substrate for MTAP and MTAN enzymes. Hydrolysis or phosphorolysis of 2AMTA forms 2,6-diaminopurine, a fluorescent and easily quantitated product. We kinetically characterize 2AMTA with human MTAP, bacterial MTANs and use 2,6-diaminopurine as a fluorescent substrate for yeast adenine phosphoribosyltransferase. 2AMTA was used as the substrate to kinetically characterize the dissociation constants for three-transition-state analogue inhibitors of MTAP and MTAN. Kinetic values obtained from continuous fluorescent assays with MTA were in good agreement with previously measured literature values, but gave smaller experimental errors. Chemical synthesis from ribose and 2,6-dichloropurine provided crystalline 2AMTA as the oxalate salt. Chemo-enzymatic synthesis from ribose and 2,6-diaminopurine produced 2-amino-S-adenosylmethionine for hydrolytic conversion to 2AMTA. Interaction of 2AMTA with human MTAP was also characterized by pre-steady-state kinetics and by analysis of the crystal structure in a complex with sulfate as a catalytically inert analogue of phosphate. This assay is suitable for inhibitor screening by detection of fluorescent product, for quantitative analysis of hits by rapid and accurate measurement of inhibition constants in continuous assays, and pre-steady-state kinetic analysis of the target enzymes.


Assuntos
Adenina/metabolismo , Ensaios Enzimáticos/métodos , Fluorescência , 2-Aminopurina/análogos & derivados , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenina/análogos & derivados , Adenina/análise , Adenina Fosforribosiltransferase/metabolismo , Humanos , Cinética , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato
5.
J Chem Inf Model ; 53(9): 2390-401, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23889525

RESUMO

Mycobacterium tuberculosis InhA (MtInhA) is an attractive enzyme to drug discovery efforts due to its validation as an effective biological target for tuberculosis therapy. In this work, two different virtual-ligand-screening approaches were applied in order to identify new InhA inhibitors' candidates from a library of ligands selected from the ZINC database. First, a 3-D pharmacophore model was built based on 36 available MtInhA crystal structures. By combining structure-based and ligand-based information, four pharmacophoric points were designed to select molecules able to satisfy the binding features of MtInhA substrate-binding cavity. The second approach consisted of using four well established docking programs, with different search algorithms, to compare the binding mode and score of the selected molecules from the aforementioned library. After detailed analyses of the results, six ligands were selected for in vitro analysis. Three of these molecules presented a satisfactory inhibitory activity with IC50 values ranging from 24 (±2) µM to 83 (±5) µM. The best compound presented an uncompetitive inhibition mode to NADH and 2-trans-dodecenoyl-CoA substrates, with Ki values of 24 (±3) µM and 20 (±2) µM, respectively. These molecules were not yet described as antituberculars or as InhA inhibitors, making its novelty interesting to start efforts on ligand optimization in order to identify new effective drugs against tuberculosis having InhA as a target. More studies are underway to dissect the discovered uncompetitive inhibitor interactions with MtInhA.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Interface Usuário-Computador , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ligantes , Oxirredutases/química , Oxirredutases/metabolismo , Conformação Proteica
6.
ACS Infect Dis ; 9(4): 966-978, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36920074

RESUMO

Helicobacter pylori is found in the gut lining of more than half of the world's population, causes gastric ulcers, and contributes to stomach cancers. Menaquinone synthesis in H. pylori relies on the rare futalosine pathway, where H. pylori 5'-methylthioadenosine nucleosidase (MTAN) is proposed to play an essential role. Transition state analogues of MTAN, including BuT-DADMe-ImmA (BTDIA) and MeT-DADMe-ImmA (MTDIA), exhibit bacteriostatic action against numerous diverse clinical isolates of H. pylori with minimum inhibitory concentrations (MIC's) of <2 ng/mL. Three H. pylori BTDIA-resistant clones were selected under increasing BTDIA pressure. Whole genome sequencing showed no mutations in MTAN. Instead, resistant clones had mutations in metK, methionine adenosyltransferase (MAT), feoA, a regulator of the iron transport system, and flhF, a flagellar synthesis regulator. The mutation in metK causes expression of a MAT with increased catalytic activity, leading to elevated cellular S-adenosylmethionine. Metabolite analysis and the mutations associated with resistance suggest multiple inputs associated with BTDIA resistance. Human gut microbiome exposed to MTDIA revealed no growth inhibition under aerobic or anaerobic conditions. Transition state analogues of H. pylori MTAN have potential as agents for treating H. pylori infection without disruption of the human gut microbiome or inducing resistance in the MTAN target.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Purina-Núcleosídeo Fosforilase , N-Glicosil Hidrolases
7.
Arch Biochem Biophys ; 517(1): 1-11, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22119138

RESUMO

Administration of the current tuberculosis (TB) vaccine to newborns is not a reliable route for preventing TB in adults. The conversion of XMP to GMP is catalyzed by guaA-encoded GMP synthetase (GMPS), and deletions in the Shiguella flexneri guaBA operon led to an attenuated auxotrophic strain. Here we present the cloning, expression, and purification of recombinant guaA-encoded GMPS from Mycobacterium tuberculosis (MtGMPS). Mass spectrometry data, oligomeric state determination, steady-state kinetics, isothermal titration calorimetry (ITC), and multiple sequence alignment are also presented. The homodimeric MtGMPS catalyzes the conversion of XMP, MgATP, and glutamine into GMP, ADP, PP(i), and glutamate. XMP, NH(4)(+), and Mg(2+) displayed positive homotropic cooperativity, whereas ATP and glutamine displayed hyperbolic saturation curves. The activity of ATP pyrophosphatase domain is independent of glutamine amidotransferase domain, whereas the latter cannot catalyze hydrolysis of glutamine to NH(3) and glutamate in the absence of substrates. ITC data suggest random order of binding of substrates, and PP(i) is the last product released. Sequence comparison analysis showed conservation of both Cys-His-Glu catalytic triad of N-terminal Class I amidotransferase and of amino acid residues of the P-loop of the N-type ATP pyrophosphatase family.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/isolamento & purificação , Clonagem Molecular , Glutaminase/metabolismo , Humanos , Cinética , Ligantes , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Titulometria
8.
ACS Chem Biol ; 17(12): 3407-3419, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36413975

RESUMO

Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT) is essential for purine salvage of hypoxanthine into parasite purine nucleotides. Transition state analogue inhibitors of PfHGXPRT are characterized by kinetic analysis, thermodynamic parameters, and X-ray crystal structures. Compound 1, 9-deazaguanine linked to an acyclic ribocation phosphonate mimic, shows a kinetic Ki of 0.5 nM. Isothermal titration calorimetry (ITC) experiments of 1 binding to PfHGXPRT reveal enthalpically driven binding with negative cooperativity for the binding of two inhibitor molecules in the tetrameric enzyme. Crystal structures of 1 bound to PfHGXPRT define the hydrogen bond and ionic contacts to complement binding thermodynamics. Dynamics of ribosyl transfer from 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) to hypoxanthine were examined by 18O isotope exchange at the bridging phosphoryl oxygen of PRPP pyrophosphate. Rotational constraints or short transition state lifetimes prevent torsional rotation and positional isotope exchange of bridging to nonbridging oxygen in the α-pyrophosphoryl group. Thermodynamic analysis of the transition state analogue and magnesium pyrophosphate binding reveal random and cooperative binding to PfHGXPRT, unlike the obligatory ordered reaction kinetics reported earlier for substrate kinetics.


Assuntos
Difosfatos , Plasmodium falciparum , Cinética , Isótopos , Oxigênio , Hipoxantinas
9.
Arch Biochem Biophys ; 512(2): 143-53, 2011 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-21672513

RESUMO

The emergence of drug-resistant strains of Mycobacterium tuberculosis, the major causative agent of tuberculosis (TB), and the deadly HIV-TB co-infection have led to an urgent need for the development of new anti-TB drugs. The histidine biosynthetic pathway is present in bacteria, archaebacteria, lower eukaryotes and plants, but is absent in mammals. Disruption of the hisD gene has been shown to be essential for M. tuberculosis survival. Here we present cloning, expression and purification of recombinant hisD-encoded histidinol dehydrogenase (MtHisD). N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtHisD. Analytical gel filtration, metal requirement analysis, steady-state kinetics and isothermal titration calorimetry data showed that homodimeric MtHisD is a metalloprotein that follows a Bi Uni Uni Bi Ping-Pong mechanism. pH-rate profiles and a three-dimensional model of MtHisD allowed proposal of amino acid residues involved in either catalysis or substrate(s) binding.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , DNA Bacteriano/genética , Dimerização , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Termodinâmica
10.
J Struct Biol ; 169(3): 413-23, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20035876

RESUMO

The emergence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of tuberculosis, has exacerbated the treatment and control of this disease. Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that recycles cytidine and 2'-deoxycytidine for uridine and 2'-deoxyuridine synthesis, respectively. A probable M. tuberculosis CDA-coding sequence (cdd, Rv3315c) was cloned, sequenced, expressed in Escherichia coli BL21(DE3), and purified to homogeneity. Mass spectrometry, N-terminal amino acid sequencing, gel filtration chromatography, and metal analysis of M. tuberculosis CDA (MtCDA) were carried out. These results and multiple sequence alignment demonstrate that MtCDA is a homotetrameric Zn(2+)-dependent metalloenzyme. Steady-state kinetic measurements yielded the following parameters: K(m)=1004 microM and k(cat)=4.8s(-1) for cytidine, and K(m)=1059 microM and k(cat)=3.5s(-1) for 2'-deoxycytidine. The pH dependence of k(cat) and k(cat)/K(M) for cytidine indicate that protonation of a single ionizable group with apparent pK(a) value of 4.3 abolishes activity, and protonation of a group with pK(a) value of 4.7 reduces binding. MtCDA was crystallized and crystal diffracted at 2.0 A resolution. Analysis of the crystallographic structure indicated the presence of a Zn(2+) coordinated by three conserved cysteines and the structure exhibits the canonical cytidine deaminase fold.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citidina Desaminase/química , Citidina Desaminase/metabolismo , Mycobacterium tuberculosis/enzimologia , Zinco/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Citidina Desaminase/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrofotometria Atômica
11.
Arch Biochem Biophys ; 497(1-2): 35-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20226755

RESUMO

Uridine phosphorylase (UP) is a key enzyme in the pyrimidine salvage pathway, catalyzing the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate (R1P). The human UP type 1 (hUP1) is a molecular target for the design of inhibitors intended to boost endogenous uridine levels to rescue normal tissues from the toxicity of fluoropyrimidine nucleoside chemotherapeutic agents, such as capecitabine and 5-fluorouracil. Here, we describe a method to obtain homogeneous recombinant hUP1, and present initial velocity, product inhibition, and equilibrium binding data. These results suggest that hUP1 catalyzes uridine phosphorolysis by a steady-state ordered bi bi kinetic mechanism, in which inorganic phosphate binds first followed by the binding of uridine, and uracil dissociates first, followed by R1P release. Fluorescence titration at equilibrium showed cooperative binding of either P(i) or R1P binding to hUP1. Amino acid residues involved in either catalysis or substrate binding were proposed based on pH-rate profiles.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Uridina Fosforilase/antagonistas & inibidores , Uridina Fosforilase/metabolismo , Catálise , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribosemonofosfatos/metabolismo , Especificidade por Substrato/genética , Uridina Fosforilase/genética
12.
Bioorg Med Chem ; 18(13): 4769-74, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570524

RESUMO

This work describes for the first time the structure of purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP) in complex with sulfate and its natural substrate, 2'-deoxyguanosine, and its application to virtual screening. We report docking studies of a set of molecules against this structure. Application of polynomial empirical scoring function was able to rank docking solutions with good predicting power which opens the possibility to apply this new criterion to analyze docking solutions and screen small-molecule databases for new chemical entities to inhibit MtPNP.


Assuntos
Mycobacterium tuberculosis/enzimologia , Purina-Núcleosídeo Fosforilase/química , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Desoxiguanosina/química , Desoxiguanosina/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Purina-Núcleosídeo Fosforilase/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfatos/química , Sulfatos/farmacologia
13.
Arch Biochem Biophys ; 486(2): 155-64, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19416718

RESUMO

Purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP) is numbered among targets for persistence of the causative agent of tuberculosis. Here, it is shown that MtPNP is more specific to natural 6-oxopurine nucleosides and synthetic compounds, and does not catalyze the phosphorolysis of adenosine. Initial velocity, product inhibition and equilibrium binding data suggest that MtPNP catalyzes 2'-deoxyguanosine (2dGuo) phosphorolysis by a steady-state ordered bi bi kinetic mechanism, in which inorganic phosphate (P(i)) binds first followed by 2dGuo, and ribose 1-phosphate dissociates first followed by guanine. pH-rate profiles indicated a general acid as being essential for both catalysis and 2dGuo binding, and that deprotonation of a group abolishes P(i) binding. Proton inventory and solvent deuterium isotope effects indicate that a single solvent proton transfer makes a modest contribution to the rate-limiting step. Pre-steady-state kinetic data indicate that product release appears to contribute to the rate-limiting step for MtPNP-catalyzed reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Purina-Núcleosídeo Fosforilase/metabolismo , Proteínas de Bactérias/genética , Concentração de Íons de Hidrogênio , Cinética , Purina-Núcleosídeo Fosforilase/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato
14.
ACS Med Chem Lett ; 10(3): 363-366, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30891141

RESUMO

Aminofutalosine synthase (MqnE) catalyzes an important rearrangement reaction in menaquinone biosynthesis by the futalosine pathway. In this Letter, we report the identification of previously unreported inhibitors of MqnE using a mechanism-guided approach. The best inhibitor shows efficient inhibitory activity against H. pylori (IC50 = 1.8 ± 0.4 µM) and identifies MqnE as a promising target for antibiotic development.

15.
J Med Chem ; 62(7): 3286-3296, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30860833

RESUMO

Bacterial 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase (MTAN) hydrolyzes adenine from its substrates to form S-methyl-5-thioribose and S-ribosyl-l-homocysteine. MTANs are involved in quorum sensing, menaquinone synthesis, and 5'-methylthioadenosine recycling to S-adenosylmethionine. Helicobacter pylori uses MTAN in its unusual menaquinone pathway, making H. pylori MTAN a target for antibiotic development. Human 5'-methylthioadenosine phosphorylase (MTAP), a reported anticancer target, catalyzes phosphorolysis of 5'-methylthioadenosine to salvage S-adenosylmethionine. Transition-state analogues designed for HpMTAN and MTAP show significant overlap in specificity. Fifteen unique transition-state analogues are described here and are used to explore inhibitor specificity. Several analogues of HpMTAN bind in the picomolar range while inhibiting human MTAP with orders of magnitude weaker affinity. Structural analysis of HpMTAN shows inhibitors extending through a hydrophobic channel to the protein surface. The more enclosed catalytic sites of human MTAP require the inhibitors to adopt a folded structure, displacing the phosphate nucleophile from the catalytic site.


Assuntos
Inibidores Enzimáticos/farmacologia , Helicobacter pylori/enzimologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Tioléster Hidrolases/antagonistas & inibidores , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Purina-Núcleosídeo Fosforilase/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Tioléster Hidrolases/metabolismo
16.
ACS Biomater Sci Eng ; 5(2): 748-758, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405836

RESUMO

The rise of antibiotic resistance, coupled with increased expectations for mobility in later life, is creating a need for biofilm inhibitors and delivery systems that will reduce surgical implant infection. A limitation of some of these existing delivery approaches is toxicity exhibited toward host cells. Here, we report the application of a novel inhibitor of the enzyme, methylthioadenosine nucleosidase (MTAN), a key enzyme in bacterial metabolic pathways, which include S-adenosylmethionine catabolism and purine nucleotide recycling, in combination with a poly(vinyl alcohol)-tyramine-based (PVA-Tyr) hydrogel delivery system. We demonstrate that a lead MTAN inhibitor, selected from a screened library of 34 candidates, (2S)-2-(4-amino-5H-pyrrolo3,2-dpyrimidin-7-ylmethyl)aminoundecan-1-ol (31), showed a minimum biofilm inhibitory concentration of 2.2 ± 0.4 µM against a clinical staphylococcal species isolated from an infected implant. We observed that extracellular DNA, a key constituent of biofilms, is significantly reduced when treated with 10 µM compound 31, along with a decrease in biofilm thickness. Compound 31 was incorporated into a hydrolytically degradable photo-cross-linked PVA-Tyr hydrogel and the release profile was evaluated by HPLC studies. Compound 31 released from the PVA-hydrogel system significantly reduced biofilm formation (77.2 ± 8.4% biofilm inhibition). Finally, compound 31 released from PVA-Tyr showed no negative impact on human bone marrow stromal cell (MSC) viability, proliferation, or morphology. The results demonstrate the potential utility of MTAN inhibitors in treating infections caused by Gram-positive bacteria, and the development of a nontoxic release system that has potential for tunability for time scale of delivery.

17.
ACS Chem Biol ; 13(11): 3173-3183, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30339406

RESUMO

Campylobacter jejuni is a Gram-negative bacterium responsible for food-borne gastroenteritis and associated with Guillain-Barré, Reiter, and irritable bowel syndromes. Antibiotic resistance in C. jejuni is common, creating a need for antibiotics with novel mechanisms of action. Menaquinone biosynthesis in C. jejuni uses the rare futalosine pathway, where 5'-methylthioadenosine nucleosidase ( CjMTAN) is proposed to catalyze the essential hydrolysis of adenine from 6-amino-6-deoxyfutalosine to form dehypoxanthinylfutalosine, a menaquinone precursor. The substrate specificity of CjMTAN is demonstrated to include 6-amino-6-deoxyfutalosine, 5'-methylthioadenosine, S-adenosylhomocysteine, adenosine, and 5'-deoxyadenosine. These activities span the catalytic specificities for the role of bacterial MTANs in menaquinone synthesis, quorum sensing, and S-adenosylmethionine recycling. We determined inhibition constants for potential transition-state analogues of CjMTAN. The best of these compounds have picomolar dissociation constants and were slow-onset tight-binding inhibitors. The most potent CjMTAN transition-state analogue inhibitors inhibited C. jejuni growth in culture at low micromolar concentrations, similar to gentamicin. The crystal structure of apoenzyme C. jejuni MTAN was solved at 1.25 Å, and five CjMTAN complexes with transition-state analogues were solved at 1.42 to 1.95 Å resolution. Inhibitor binding induces a loop movement to create a closed catalytic site with Asp196 and Ile152 providing purine leaving group activation and Arg192 and Glu12 activating the water nucleophile. With inhibitors bound, the interactions of the 4'-alkylthio or 4'-alkyl groups of this inhibitor family differ from the Escherichia coli MTAN structure by altered protein interactions near the hydrophobic pocket that stabilizes 4'-substituents of transition-state analogues. These CjMTAN inhibitors have potential as specific antibiotic candidates against C. jejuni.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , N-Glicosil Hidrolases/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Antibacterianos/química , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , Domínio Catalítico , Inibidores Enzimáticos/química , Cinética , Estrutura Molecular , N-Glicosil Hidrolases/química , Pirimidinas/química , Pirróis/química , Relação Estrutura-Atividade , Especificidade por Substrato
18.
ACS Chem Biol ; 13(1): 152-160, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29178779

RESUMO

Phosphoribosyl transferases (PRTs) are essential in nucleotide synthesis and salvage, amino acid, and vitamin synthesis. Transition state analysis of several PRTs has demonstrated ribocation-like transition states with a partial positive charge residing on the pentose ring. Core chemistry for synthesis of transition state analogues related to the 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) reactant of these enzymes could be developed by stereospecific placement of bis-phosphate groups on an iminoaltritol ring. Cationic character is provided by the imino group and the bis-phosphates anchor both the 1- and 5-phosphate binding sites. We provide a facile synthetic path to these molecules. Cyclic-nitrone redox methodology was applied to the stereocontrolled synthesis of three stereoisomers of a selectively monoprotected diol relevant to the synthesis of transition-state analogue inhibitors. These polyhydroxylated pyrrolidine natural product analogues were bis-phosphorylated to generate analogues of the ribocationic form of 5-phosphoribosyl 1-phosphate. A safe, high yielding synthesis of the key intermediate represents a new route to these transition state mimics. An enantiomeric pair of iminoaltritol bis-phosphates (L-DIAB and D-DIAB) was prepared and shown to display inhibition of Plasmodium falciparum orotate phosphoribosyltransferase and Saccharomyces cerevisiae adenine phosphoribosyltransferase (ScAPRT). Crystallographic inhibitor binding analysis of L- and D-DIAB bound to the catalytic sites of ScAPRT demonstrates accommodation of both enantiomers by altered ring geometry and bis-phosphate catalytic site contacts.


Assuntos
Adenina Fosforribosiltransferase/química , Adenina Fosforribosiltransferase/metabolismo , Inibidores Enzimáticos/metabolismo , Compostos Organofosforados/química , Adenina/química , Adenina/metabolismo , Adenina Fosforribosiltransferase/antagonistas & inibidores , Domínio Catalítico , Técnicas de Química Sintética , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Compostos Organofosforados/síntese química , Orotato Fosforribosiltransferase/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Estereoisomerismo
19.
Future Med Chem ; 5(11): 1341-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23859211

RESUMO

Malaria is a leading cause of human death within the tropics. The gradual generation of drug resistance imposes an urgent need for the development of new and selective antimalarial agents. Kinetic isotope effects coupled to computational chemistry have provided the relevant details on geometry and charge of enzymatic transition states to facilitate the design of transition-state analogs. These features have been reproduced into chemically stable mimics through synthetic chemistry, generating inhibitors with dissociation constants in the pico- to femto-molar range. Transition-state analogs are expected to contribute to the control of malaria.


Assuntos
Antimaláricos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Malária/tratamento farmacológico , Purinas/química , Adenilossuccinato Liase/antagonistas & inibidores , Adenilossuccinato Liase/metabolismo , Antimaláricos/química , Antimaláricos/farmacologia , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Pentosiltransferases/antagonistas & inibidores , Pentosiltransferases/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Purinas/farmacologia , Purinas/uso terapêutico , Pirrolidinas/química , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo
20.
Biochimie ; 94(1): 155-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22033138

RESUMO

Consumption has been a scourge of mankind since ancient times. This illness has charged a high price to human lives. Many efforts have been made to defeat Mycobacterium tuberculosis (Mt). The M. tuberculosis purine nucleoside phosphorylase (MtPNP) is considered an interesting target to pursuit new potential inhibitors, inasmuch it belongs to the purine salvage pathway and its activity might be involved in the mycobacterial latency process. Here we present the MtPNP crystallographic structure associated with acyclovir and phosphate (MtPNP:ACY:PO(4)) at 2.10 Å resolution. Molecular dynamics simulations were carried out in order to dissect MtPNP:ACY:PO(4) structural features, and the influence of the ligand in the binding pocket stability. Our results revealed that the ligand leads to active site lost of stability, in agreement with experimental results, which demonstrate a considerable inhibitory activity against MtPNP (K(i) = 150 nM). Furthermore, we observed that some residues which are important in the proper ligand's anchor into the human homologous enzyme do not present the same importance to MtPNP. Therewithal, these findings contribute to the search of new specific inhibitors for MtPNP, since peculiarities between the mycobacterial and human enzyme binding sites have been identified, making a structural-based drug design feasible.


Assuntos
Aciclovir/farmacologia , Mycobacterium tuberculosis/enzimologia , Purina-Núcleosídeo Fosforilase/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Análise de Componente Principal , Conformação Proteica , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA