Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Ecotoxicol Environ Saf ; 279: 116416, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749195

RESUMO

Wetland plants play a crucial role in regulating soil geochemistry, influencing heavy metal (HM) speciation, bioavailability, and uptake, thus impacting phytoremediation potential. We hypothesized that variations in HM biogeochemistry within estuarine soils are controlled by distinct estuarine plant species. We evaluated the soils (pH, redox potential, rhizosphere pH, HM total concentration, and geochemical fractionation), plant parts (shoot and root), and iron plaques of three plants growing in an estuary affected by Fe-rich mine tailings. Though the integration of multiple plant and soil analysis, this work emphasizes the importance of considering geochemical pools of HM for predicting their fate. Apart from the predominance of HM associated with Fe oxides, Typha domingensis accumulated the highest Cr and Ni contents in their shoots (> 100 mg kg-1). In contrast, Hibiscus tiliaceus accumulated more Cu and Pb in their roots (> 50 mg kg-1). The differences in rhizosphere soil conditions and root bioturbation explained the different potentials between the plants by altering the soil dynamics and HM's bioavailability, ultimately affecting their uptake. This study suggests that Eleocharis acutangula is not suitable for phytoextraction or phytostabilization, whereas Typha domingensis shows potential for Cr and Ni phytoextraction. In addition, we first showed Hibiscus tiliaceus as a promising wood species for Cu and Pb phytostabilization.


Assuntos
Biodegradação Ambiental , Estuários , Metais Pesados , Poluentes do Solo , Solo , Typhaceae , Áreas Alagadas , Metais Pesados/metabolismo , Metais Pesados/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Typhaceae/metabolismo , Solo/química , Rizosfera , Raízes de Plantas/metabolismo , Mineração
2.
Biometals ; 35(1): 87-98, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837588

RESUMO

Molybdenum (Mo) is an essential trace element for bacteria that is utilized in myriad metalloenzymes that directly couple to the biogeochemical cycling of nitrogen, sulfur, and carbon. In particular, Mo is found in the most common nitrogenase enzyme, and the scarcity and low bioavailability of Mo in soil may be a critical factor that contributes to the limitation of nitrogen fixation in forests and agroenvironments. To overcome this scarcity, microbes produce exudates that specifically chelate scarce metals, promoting their solubilization and uptake. Here, we have determined the structure and stability constants of Mo bound by protochelin, a siderophore produced by bacteria under Mo-depleted conditions. Spectrophotometric titration spectra indicated a coordination shift from a catecholate to salicylate binding mode for MoVI-protochelin (Mo-Proto) complexes at pH < 5. pKa values obtained from analysis of titrations were 4.8 ± 0.3 for MoVIO2H3Proto- and 3.3 ± 0.1 for MoVIO2H4Proto. The occurrence of negatively charged Mo-Proto complexes at pH 6 was also confirmed by mass spectrometry. K-edge Extended X-ray absorption fine structure spectroscopy confirmed the change in Mo coordination at low pH, and structural fitting provides insights into the physical architecture of complexes at neutral and acidic pH. These findings suggest that Mo can be chelated by protochelin across a wide environmental pH range, with a coordination shift occurring at pH < 5. This chelation and associated coordination shift may impact biological availability and mineral surface retention of Mo under acidic conditions.


Assuntos
Complexos de Coordenação , Oligoelementos , Complexos de Coordenação/química , Molibdênio/química , Salicilatos , Sideróforos/química
3.
Environ Sci Technol ; 54(5): 2951-2960, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32023050

RESUMO

Permafrost contains a large (1700 Pg C) terrestrial pool of organic matter (OM) that is susceptible to degradation as global temperatures increase. Of particular importance is syngenetic Yedoma permafrost containing high OM content. Reactive iron phases promote stabilizing interactions between OM and soil minerals and this stabilization may be of increasing importance in permafrost as the thawed surface region ("active layer") deepens. However, there is limited understanding of Fe and other soil mineral phase associations with OM carbon (C) moieties in permafrost soils. To elucidate the elemental associations involved in organomineral complexation within permafrost systems, soil cores spanning a Pleistocene permafrost chronosequence (19,000, 27,000, and 36,000 years old) were collected from an underground tunnel near Fairbanks, Alaska. Subsamples were analyzed via scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy at the nano- to microscale. Amino acid-rich moieties decreased in abundance across the chronosequence. Strong correlations between C and Fe with discrete Fe(III) or Fe(II) regions selectively associated with specific OM moieties were observed. Additionally, Ca coassociated with C through potential cation bridging mechanisms. Results indicate Fe(III), Fe(II), and mixed valence phases associated with OM throughout diverse permafrost environments, suggesting that organomineral complexation is crucial to predict C stability as permafrost systems warm.


Assuntos
Pergelissolo , Alaska , Carbono , Compostos Férricos , Solo
4.
Environ Sci Technol ; 51(6): 3223-3232, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28218537

RESUMO

The role of microbial activities on the transformation of chromium (Cr) remediation products has generally been overlooked. This study investigated the stability of Cr(III)-Fe(III)-(oxy)hydroxides, common Cr(VI) remediation products, with a range of compositions in the presence of common microbial exudates, siderophores and small organic acids. In the presence of a representative siderophore, desferrioxamine B (DFOB), iron (Fe) was released at higher rates and to greater extents relative to Cr from all solid phases. The presence of oxalate alone caused the release of Cr, but not of Fe, from all solid phases. In the presence of both DFOB and oxalate, oxalate acted synergistically with DFOB to increase the Fe, but not the Cr, release rate. Upon reaction with DFOB or DFOB + oxalate, the remaining solids became enriched in Cr relative to Fe. Such incongruent dissolution led to solid phases with different compositions and increased solubility relative to the initial solid phases. Thus, the presence of microbial exudates can promote the release of Cr(III) from remediation products via both ligand complexation and increased solid solubility. Understanding the potential reaction kinetics and pathways of Cr(VI) remediation products in the presence of microbial activities is necessary to assess their long-term stability.


Assuntos
Cromo , Sideróforos , Compostos Férricos , Hidróxidos , Ferro , Oxirredução , Solubilidade
5.
Environ Sci Technol ; 50(18): 9963-71, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27570123

RESUMO

Manganese (Mn) contamination of well water is recognized as an environmental health concern. In the southeastern Piedmont region of the United States, well water Mn concentrations can be >2 orders of magnitude above health limits, but the specific sources and causes of elevated Mn in groundwater are generally unknown. Here, using field, laboratory, spectroscopic, and geospatial analyses, we propose that natural pedogenetic and hydrogeochemical processes couple to export Mn from the near-surface to fractured-bedrock aquifers within the Piedmont. Dissolved Mn concentrations are greatest just below the water table and decrease with depth. Solid-phase concentration, chemical extraction, and X-ray absorption spectroscopy data show that secondary Mn oxides accumulate near the water table within the chemically weathering saprolite, whereas less-reactive, primary Mn-bearing minerals dominate Mn speciation within the physically weathered transition zone and bedrock. Mass-balance calculations indicate soil weathering has depleted over 40% of the original solid-phase Mn from the near-surface, and hydrologic gradients provide a driving force for downward delivery of Mn. Overall, we estimate that >1 million people in the southeastern Piedmont consume well water containing Mn at concentrations exceeding recommended standards, and collectively, these results suggest that integrated soil-bedrock-system analyses are needed to predict and manage Mn in drinking-water wells.


Assuntos
Manganês , Solo , Monitoramento Ambiental , Água Subterrânea/química , Água , Poluentes Químicos da Água
6.
Environ Sci Technol ; 49(7): 4200-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25668070

RESUMO

Biogenic MnO2 minerals affect metal fate and transport in natural and engineered systems by strongly sorbing metals ions. The ability to produce MnO2 is widely dispersed in the microbial tree of life, leading to potential differences in the minerals produced by different organisms. In this study, we compare the structure and reactivity of biogenic Mn oxides produced by the biofilm-forming bacterium Pseudomonas putida GB-1 and the white-rot fungus Coprinellus sp. The rate of Mn(II) oxidation, and thus biomineral production, was 45 times lower for Coprinellus sp. (5.1 × 10(-2) mM d(-1)) than for P. putida (2.32 mM d(-1)). Both organisms produced predominantly Mn(IV) oxides with hexagonal-sheet symmetry, low sheet stacking, small particle size, and Mn(II/III) in the interlayer. However, we found that mycogenic MnO2 could support a significantly lower quantity of Ni sorbed via inner-sphere coordination at vacancy sites than the bacteriogenic MnO2: 0.09 versus 0.14 mol Ni mol(-1) Mn. In addition, 50-100% of the adsorbed Ni partitioned to the MnO2, which accounts for less than 20% of the sorbent on a mass basis. The vacancy content, which appears to increase with the kinetics of MnO2 precipitation, exerts significant control on biomineral reactivity.


Assuntos
Agaricales/metabolismo , Compostos de Manganês/química , Nanopartículas/química , Óxidos/química , Pseudomonas putida/metabolismo , Adsorção , Agaricales/crescimento & desenvolvimento , Biomassa , Cinética , Estrutura Molecular , Níquel/química , Oxirredução , Pseudomonas putida/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
7.
Biometals ; 28(3): 461-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25619589

RESUMO

Organisms acquire metals from the environment by releasing small molecules that solubilize and promote their specific uptake. The best known example of this nutrient uptake strategy is the exudation of siderophores, which are a structurally-diverse class of molecules that are traditionally viewed as being integral to iron uptake. Siderophores have been proposed to act through a variety of processes, but their effectiveness can be mitigated by a variety of chemical and physical processes of both biotic and abiotic origin. Processes that occur at the surface of minerals can degrade or sequester siderophores, preventing them from fulfilling their function of returning metals to the organism. In addition, biotic processes including enzymatic degradation of the siderophore and piracy of the metal or of the siderophore complex also disrupt iron uptake. Some organisms have adapted their nutrient acquisition strategies to address these potential pitfalls, producing multiple siderophores and other exudates that take advantage of varying kinetic and thermodynamic factors to allow the continued uptake of metals. A complete understanding of the factors that contribute to metal uptake in nature will require a concerted effort to study processes identified in laboratory systems in the context of more complicated environmental systems.


Assuntos
Sideróforos/metabolismo , Transporte Biológico , Micronutrientes/metabolismo , Minerais/metabolismo , Oligoelementos/metabolismo
8.
Environ Int ; 186: 108615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582061

RESUMO

Compost is widely used in agriculture as fertilizer while providing a practical option for solid municipal waste disposal. However, compost may also contain per- and polyfluoroalkyl substances (PFAS), potentially impacting soils and leading to PFAS entry into food chains and ultimately human exposure risks via dietary intake. This study examined how compost affects the bioavailability and uptake of eight PFAS (two ethers, three fluorotelomer sulfonates, and three perfluorosulfonates) by lettuce (Lactuca sativa) grown in commercial organic compost-amended, PFAS spiked soils. After 50 days of greenhouse experiment, PFAS uptake by lettuce decreased (by up to 90.5 %) with the increasing compost amendment ratios (0-20 %, w/w), consistent with their decreased porewater concentrations (by 30.7-86.3 %) in compost-amended soils. Decreased bioavailability of PFAS was evidenced by the increased in-situ soil-porewater distribution coefficients (Kd) (by factors of 1.5-7.0) with increasing compost additions. Significant negative (or positive) correlations (R2 ≥ 0.55) were observed between plant bioaccumulation (or Kd) and soil organic carbon content, suggesting that compost amendment inhibited plant uptake of PFAS mainly by increasing soil organic carbon and enhancing PFAS sorption. However, short-chain PFAS alternatives (e.g., perfluoro-2-methoxyacetic acid (PFMOAA)) were effectively translocated to shoots with translocation factors > 2.9, increasing their risks of contamination in leafy vegetables. Our findings underscore the necessity for comprehensive risk assessment of compost-borne PFAS when using commercial compost products in agricultural lands.


Assuntos
Compostagem , Fluorocarbonos , Lactuca , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Compostagem/métodos , Solo/química , Fluorocarbonos/metabolismo , Fluorocarbonos/análise , Lactuca/metabolismo , Disponibilidade Biológica , Agricultura/métodos
9.
Environ Microbiol Rep ; 16(1): e13234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240404

RESUMO

We investigated the ability of four plant and soil-associated fungi to modify or degrade siderophore structures leading to reduced siderophore iron-affinity in iron-limited and iron-replete cultures. Pyrenophora biseptata, a melanized fungus from wheat roots, was effective in inactivating siderophore iron-chelating moieties. In the supernatant solution, the tris-hydroxamate siderophore desferrioxamine B (DFOB) underwent a stepwise reduction of the three hydroxamate groups in DFOB to amides leading to a progressive loss in iron affinity. A mechanism is suggested based on the formation of transient ferrous iron followed by reduction of the siderophore hydroxamate groups during fungal high-affinity reductive iron uptake. P. biseptata also produced its own tris-hydroxamate siderophores (neocoprogen I and II, coprogen and dimerum acid) in iron-limited media and we observed loss of hydroxamate chelating groups during incubation in a manner analogous to DFOB. A redox-based reaction was also involved with the tris-catecholate siderophore protochelin in which oxidation of the catechol groups to quinones was observed. The new siderophore inactivating activity of the wheat symbiont P. biseptata is potentially widespread among fungi with implications for the availability of iron to plants and the surrounding microbiome in siderophore-rich environments.


Assuntos
Ascomicetos , Sideróforos , Triticum , Sideróforos/metabolismo , Quelantes de Ferro , Ferro/metabolismo
10.
J Hazard Mater ; 474: 134592, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805820

RESUMO

This study investigates the impact of seasonality on estuarine soil geochemistry, focusing on redox-sensitive elements, particularly Fe, in a tropical estuary affected by Fe-rich mine tailings. We analyzed soil samples for variations in particle size, pH, redox potential (Eh), and the content of Fe, Mn, Cr, Cu, Ni, and Pb. Additionally, sequential extraction was employed to understand the fate of these elements. Results revealed dynamic changes in the soil geochemical environment, transitioning between near-neutral and suboxic/anoxic conditions in the wet season and slightly acidic to suboxic/oxic conditions in the dry season. During the wet season, fine particle deposition (83%) rich in Fe (50 g kg-1), primarily comprising crystalline Fe oxides, occurred significantly. Conversely, short-range ordered Fe oxides dominated during the dry season. Over consecutive wet/dry seasons, substantial losses of Fe (-55%), Mn (-41%), and other potentially toxic elements (Cr: -44%, Cu: -31%, Ni: -25%, Pb: -9%) were observed. Despite lower pseudo-total PTE contents, exchangeable PTEs associated with carbonate content increased over time (Cu: +188%, Ni: +557%, Pb: +99%). Modeling indicated climatic variables and short-range oxides substantially influenced PTE bioavailability, emphasizing the ephemeral Fe oxide control during the wet season and heightened ecological and health risks during the dry seasons.


Assuntos
Estuários , Mineração , Estações do Ano , Monitoramento Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Clima Tropical , Ferro/análise , Concentração de Íons de Hidrogênio , Oxirredução
11.
Environ Sci Technol Lett ; 11(6): 493-502, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882202

RESUMO

Uneven global distribution of phosphate rock deposits and the supply chains to transport phosphorus (P) make P fertilizers vulnerable to exogenous shocks, including commodity market shocks; extreme weather events or natural disasters; and geopolitical instability, such as trade disputes, disruption of shipping routes, and war. Understanding bidirectional risk transmission (global-to-local and local-to-global) in P supply and consumption chains is thus essential. Ignoring P system interdependencies and associated risks could have major impacts on critical infrastructure operations and increase the vulnerability of global food systems. We highlight recent unanticipated events and cascading effects that have impacted P markets globally. We discuss the need to account for exogenous shocks in local assessments of P flows, policies, and infrastructure design choices. We also provide examples of how accounting for undervalued global risks to the P industry can hasten the transition to a sustainable P future. For example, leveraging internal P recycling loops, improving plant P use efficiency, and utilizing legacy soil P all enhance system resiliency in the face of exogenous shocks and long-term anticipated threats. Strategies applied at the local level, which are embedded within national and global policy systems, can have global-scale impacts in derisking the P supply chain.

12.
J Environ Qual ; 42(6): 1902-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602431

RESUMO

Concerns over runoff water quality from agricultural lands and construction sites have led to the development of improved erosion control practices, including application of polyacrylamide (PAM). We developed a quick and reliable method for quantifying PAM in soil extracts at low carbon content by using a turbidimetric reagent, Hyamine 1622. Three high-molecular weight anionic PAMs differing in charge density (7, 20, and 50 mol%) and five water matrices, deionized (DI) water and extracts from four different soils, were used to construct PAM calibration curves by reacting PAM solutions with hyamine and measuring turbidity development from the PAM-hyamine complex. The PAM calibration curve with DI water showed a strong linear relationship ( = 0.99), and the sensitivity (slope) of calibration curves increased with increasing PAM charge density with a detection limit of 0.4 to 0.9 mg L. Identical tests with soil extracts showed the sensitivity of the hyamine method was dependent on the properties of the soil extract, primarily organic carbon concentration. Although the method was effective in mineral soils, the highest charge density PAM yielded a more reliable linear relationship ( > 0.97) and lowest detection limit (0.3 to 1.2 mg L), compared with those of the lower charge density PAMs (0.7 to 23 mg L). Our results suggest that the hyamine test could be an efficient method for quantifying PAM in environmental soil water samples as long as the organic carbon in the sample is low, such as in subsurface soil material often exposed at construction sites.

13.
Sci Total Environ ; 865: 161286, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587679

RESUMO

Water contamination by arsenic (As) affects millions of people around the world, making techniques to immobilize or remove this contaminant a pressing societal need. Biochar and iron (oxyhydr)oxides [in particular, biogenic iron (oxyhydr)oxides (BIOS)] offer the possibility of stabilizing As in remediation systems. However, little is known about the potential antagonism in As sorption generated by the dissolved organic carbon (DOC) from biochar, or whether DOC affects how As(V) interacts with BIOS. For this reason, our objectives were to evaluate the i) As(V) sorption potential in BIOS when there is presence of DOC from pyrolyzed biochars at different temperatures; and ii) identify whether the presence of DOC alters the surface complexes formed by As(V) sorbed in the BIOS. We conducted As(V) sorption experiments with BIOS at circumneutral pH conditions and in the presence of DOC from sugarcane (Saccharum officinarum) straw biochar at pyrolyzed 350 (BC350) and 750 °C (BC750). The As(V) content was quantified by inductively coupled plasma mass spectrometry, and the BIOS structure and As(V) sorption mechanisms were investigated by X-ray absorption spectroscopy. In addition, the organic moieties comprising the DOC from biochars were investigated by attenuated total reflectance Fourier transform infrared spectroscopy. The addition of DOC did not change the biomineral structure or As(V) oxidation state. The presence of DOC, however, reduced by 25 % the sorption of As(V), with BC350 being responsible for the greatest reduction in As(V) sorption capacity. Structural modeling revealed As(V) predominantly formed binuclear bidentate surface complexes on BIOS. The presence of DOC did not change the binding mechanism of As(V) in BIOS, suggesting that the reduction of As(V) sorption to BIOS was due to site blocking. Our results bring insights into the fate of As(V) in surface waters and provide a basis for understanding the competitive sorption of As(V) in environments with biochar application.


Assuntos
Arsênio , Ferro , Humanos , Óxidos , Carbono , Arsênio/análise , Carvão Vegetal/química , Espectroscopia por Absorção de Raios X , Adsorção
14.
J Hazard Mater ; 460: 132308, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639794

RESUMO

Biochar is widely used for water and soil remediation in part because of its local availability and low production cost. However, its effectiveness depends on physicochemical properties related to its feedstock and pyrolysis temperature, as well as the environmental conditions of its use site. Furthermore, biochar is susceptible to natural aging caused by changes in soil or sediment moisture, which can alter its redox properties and interactions with contaminants such as arsenic (As). In this study, we investigated the effect of pyrolysis temperature and biochar application on the release and transformations of As in contaminated sediments subjected to redox fluctuations. Biochar application and pyrolysis temperature played an important role in As species availability, As methylation, and dissolved organic carbon concentration. Furthermore, successive flooding cycles that induced reductive conditions in sediments increased the As content in the solution by up to seven times. In the solid phase, the application of biochar and the flooding cycle altered the spatial distribution and speciation of carbon, iron (Fe) and As. In general, the application of biochar decreased the reduction of Fe(III) and As(V) after the first cycle of flooding. Our results demonstrate that the flooding cycle plays an important role in the reoxidation of biochar to the point of enhancing the immobilization of As.


Assuntos
Arsênio , Compostos Férricos , Pirólise , Temperatura , Solo
15.
Biometals ; 25(2): 393-412, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22187125

RESUMO

Although siderophores are generally viewed as biological iron uptake agents, recent evidence has shown that they may play significant roles in the biogeochemical cycling and biological uptake of other metals. One such siderophore that is produced by A. vinelandii is the triscatecholate protochelin. In this study, we probe the solution chemistry of protochelin and its complexes with environmentally relevant trace metals to better understand its effect on metal uptake and cycling. Protochelin exhibits low solubility below pH 7.5 and degrades gradually in solution. Electrochemical measurements of protochelin and metal-protochelin complexes reveal a ligand half-wave potential of 200 mV. The Fe(III)Proto(3-) complex exhibits a salicylate shift in coordination mode at circumneutral to acidic pH. Coordination of Mn(II) by protochelin above pH 8.0 promotes gradual air oxidation of the metal center to Mn(III), which accelerates at higher pH values. The Mn(III)Proto(3-) complex was found to have a stability constant of log ß(110) = 41.6. Structural parameters derived from spectroscopic measurements and quantum mechanical calculations provide insights into the stability of the Fe(III)Proto(3-), Fe(III)H(3)Proto, and Mn(III)Proto(3-) complexes. Complexation of Co(II) by protochelin results in redox cycling of Co, accompanied by accelerated degradation of the ligand at all solution pH values. These results are discussed in terms of the role of catecholate siderophores in environmental trace metal cycling and intracellular metal release.


Assuntos
Complexos de Coordenação/química , Sideróforos/química , Oligoelementos/química , Concentração de Íons de Hidrogênio , Oxirredução , Solubilidade , Oligoelementos/metabolismo
16.
Environ Manage ; 50(5): 861-74, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22996400

RESUMO

Denitrification is a critical biogeochemical process that results in the conversion of nitrate to volatile products, and thus is a major route of nitrogen loss from terrestrial environments. Riparian buffers are an important management tool that is widely utilized to protect water from non-point source pollution. However, riparian buffers vary in their nitrate removal effectiveness, and thus there is a need for mechanistic studies to explore nitrate dynamics in buffer soils. The objectives of this study were to examine the influence of specific types of soluble organic matter on nitrate loss and nitrous oxide production rates, and to elucidate the relationships between these rates and the abundances of functional genes in a riparian buffer soil. Continuous-flow soil column experiments were performed to investigate the effect of three types of soluble organic matter (citric acid, alginic acid, and Suwannee River dissolved organic carbon) on rates of nitrate loss and nitrous oxide production. We found that nitrate loss rates increased as citric acid concentrations increased; however, rates of nitrate loss were weakly affected or not affected by the addition of the other types of organic matter. In all experiments, rates of nitrous oxide production mirrored nitrate loss rates. In addition, quantitative polymerase chain reaction (qPCR) was utilized to quantify the number of genes known to encode enzymes that catalyze nitrite reduction (i.e., nirS and nirK) in soil that was collected at the conclusion of column experiments. Nitrate loss and nitrous oxide production rates trended with copy numbers of both nir and 16s rDNA genes. The results suggest that low-molecular mass organic species are more effective at promoting nitrogen transformations than large biopolymers or humic substances, and also help to link genetic potential to chemical reactivity.


Assuntos
Nitrogênio/análise , Nitrogênio/metabolismo , Solo/análise , Desnitrificação , Nitratos/análise , Nitratos/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Reação em Cadeia da Polimerase
17.
Artigo em Inglês | MEDLINE | ID: mdl-36407845

RESUMO

With an estimated five million sites worldwide, soil contamination is a global-scale threat to environmental and human health. Humans continuously interact with soil, both directly and indirectly, making soils potentially significant sources of exposure to contaminants. Soil chemists are thus a potentially dynamic part of a collaborative cohort attacking environmental health science problems, yet collaborations between soil chemists and environmental heath scientists remain infrequent. In this commentary, we discuss the unique properties of soils that influence contaminants, as well as ways that soil chemists can contribute to environmental health research. Additionally, we describe barriers to, and needs for, the integration of soil chemistry expertise in environmental health science research with a focus on the future.

18.
Sci Total Environ ; 820: 153153, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041946

RESUMO

Removing phosphorus (P) from water and wastewater is essential for preventing eutrophication and protecting environmental quality. Lanthanum [La(III)]-containing materials can effectively and selectively remove orthophosphate (PO4) from aqueous systems, but there remains a need to better understand the underlying mechanism of PO4 removal. Our objectives were to 1) identify the mechanism of PO4 removal by La-containing materials and 2) evaluate the ability of a new material, La2(CO3)3(s), to remove PO4 from different aqueous matrices, including municipal wastewater. We determined the dominant mechanism of PO4 removal by comparing geochemical simulations with equilibrium data from batch experiments and analyzing reaction products by X-ray diffraction and scanning transmission electron microscopy with energy dispersive spectroscopy. Geochemical simulations of aqueous systems containing PO4 and La-containing materials predicted that PO4 removal occurs via precipitation of poorly soluble LaPO4(s). Results from batch experiments agreed with those obtained from geochemical simulations, and mineralogical characterization of the reaction products were consistent with PO4 removal occurring primarily by precipitation of LaPO4(s). Between pH 1.5 and 12.9, La2(CO3)3(s) selectively removed PO4 over other anions from different aqueous matrices, including treated wastewater. However, the rate of PO4 removal decreased with increasing solution pH. In comparison to other solids, such as La(OH)3(s), La2(CO3)3(s) exhibits a relatively low solubility, particularly under slightly acidic conditions. Consequently, release of La3+ into the environment can be minimized when La2(CO3)3(s) is deployed for PO4 sequestration.


Assuntos
Lantânio , Poluentes Químicos da Água , Adsorção , Lantânio/química , Fosfatos/química , Água
19.
Water (Basel) ; 14(22)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420182

RESUMO

Arsenic (As), chromium (Cr), and vanadium (V) are naturally occurring, redox-active elements that can become human health hazards when they are released from aquifer substrates into groundwater that may be used as domestic or irrigation source. As such, there is a need to develop incisive conceptual and quantitative models of the geochemistry and transport of potentially hazardous elements to assess risk and facilitate interventions. However, understanding the complexity and heterogeneous subsurface environment requires knowledge of solid-phase minerals, hydrologic movement, aerobic and anaerobic environments, microbial interactions, and complicated chemical kinetics. Here, we examine the relevant geochemical and hydrological information about the release and transport of potentially hazardous geogenic contaminants, specifically As, Cr, and V, as well as the potential challenges in developing a robust understanding of their behavior in the subsurface. We explore the development of geochemical models, illustrate how they can be utilized, and describe the gaps in knowledge that exist in translating subsurface conditions into numerical models, as well as provide an outlook on future research needs and developments.

20.
Water Res ; 202: 117399, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333297

RESUMO

Lanthanum modified bentonite (LMB) has been applied to eutrophic lakes to reduce phosphorus (P) concentrations in the water column and mitigate P release from sediments. Previous experiments suggest that natural organic matter (NOM) can interfere with phosphate (PO4)-binding to LMB and exacerbate lanthanum (La)-release from bentonite. This evidence served as motivation for this study to systematically determine the effects of NOM, solution pH, and bentonite as a La carrier on P removal. We conducted both geochemical modeling and controlled-laboratory batch kinetic experiments to understand the pH-dependent impacts of humic and fulvic acids on PO4-binding to LMB and La release from LMB. The role of bentonite was studied by comparing PO4 removal obtained by LMB and La3+ (added as LaCl3 salt to represent the La-containing component of LMB). Our results from both geochemical modeling and batch experiments indicate that the PO4-binding ability of LMB is decreased in the presence of NOM, and the decrease is more pronounced at pH 8.5 than at 6. At the highest evaluated NOM concentration (28 mg C L-1), PO4-removal by La3+ was substantially lower than that by LMB, implying that bentonite clay in LMB shielded La from interactions with NOM, while still allowing PO4 capture by La. Finally, the presence of NOM promoted La-release from LMB, and the amount of La released depended on solution pH and both the type (i.e., fulvic/humic acid ratio) and concentration of NOM. Overall, these results provide an important basis for management of P in lakes and eutrophication control that relies on LMB applications.


Assuntos
Bentonita , Lantânio , Concentração de Íons de Hidrogênio , Lagos , Fosfatos , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA