Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Eur J Immunol ; 54(6): e2350620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561974

RESUMO

With the continued transmission of SARS-CoV-2 across widely vaccinated populations, it remains important to develop new vaccines and vaccination strategies capable of providing protective immunity and limiting the spread of disease. Heterologous prime-boost vaccination based on the selection of different vaccine formulations and administration routes for priming and booster doses presents a promising strategy for inducing broader immune responses in key systemic and respiratory mucosal compartments. Intranasal vaccination can induce mucosal immune responses at the site of SARS-CoV-2 infection; however, the lack of clinically approved mucosal adjuvants makes it difficult to induce robust immune responses with protein subunit vaccines. Herein, we evaluated the immunogenicity of heterologous prime-boost regimens in mice and hamsters based on a parenteral vaccination of the antigen in combination with sulfated lactosylarchaeol (SLA) archaeosomes, a liposome adjuvant comprised of a single semisynthetic archaeal lipid, followed by an intranasally administered unadjuvanted SARS-CoV-2 spike antigen. Intranasal administration of unadjuvanted spike to mice and hamsters increased serum spike-specific IgG titers and spike-neutralizing activity compared with nonboosted animals. Spike-specific IgA responses were also detected in the bronchoalveolar lavage fluid in the lungs of mice that received an intranasal boost. In hamsters, the intranasal boost showed high efficacy against SARS-CoV-2 infection by protecting from body weight loss and reducing viral titers in the lungs and nasal turbinate. Overall, our heterologous intramuscular prime-intranasal boost with SLA-adjuvanted and unadjuvanted spike, respectively, demonstrated the potential of protein subunit formulations to promote antigen-specific systemic and mucosal immune responses.


Assuntos
Administração Intranasal , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Camundongos , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Cricetinae , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Imunização Secundária , Adjuvantes Imunológicos/administração & dosagem , Camundongos Endogâmicos BALB C , Imunidade nas Mucosas/imunologia , Humanos , Vacinação/métodos
2.
Nat Immunol ; 13(10): 954-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22922364

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1(-/-) mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1(-/-) macrophages, they were highly resistant to S. Typhimurium-induced cell death. Specific inhibition of the kinase RIP1 or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Salmonelose Animal/imunologia , Salmonella typhimurium/patogenicidade , Animais , Apoptose , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Evasão da Resposta Imune , Inflamassomos , Interferon Tipo I/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Transdução de Sinais
3.
J Liposome Res ; 31(3): 237-245, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32583693

RESUMO

Archaeosomes, composed of sulphated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. In addition to efficacy, the stability of vaccine components including the adjuvant is an important parameter to consider when developing novel vaccine formulations. To properly evaluate the potential of SLA glycolipids to be used as vaccine adjuvants in a clinical setting, a comprehensive evaluation of their stability is required. Herein, we evaluated the long term stability of preformed empty SLA archaeosomes prior to admixing with antigen at 4 °C or 37 °C for up to 6 months. In addition, the stability of adjuvant and antigen was evaluated for up to 1 month following admixing. Multiple analytical parameters evaluating the molecular integrity of SLA and the liposomal profile were assessed. Following incubation at 4 °C or 37 °C, the SLA glycolipid did not show any pattern of degradation as determined by mass spectroscopy, nuclear magnetic resonance (NMR) and thin layer chromatography (TLC). In addition, SLA archaeosome vesicle characteristics, such as size, zeta potential, membrane fluidity and vesicular morphology, were largely consistent throughout the course of the study. Importantly, following storage for 6 months at both 4 °C and 37 °C, the adjuvant properties of empty SLA archaeosomes were unchanged, and following admixing with antigen, the immunogenicity of the vaccine formulations was also unchanged when stored at both 4 °C and 37 °C for up to 1 month. Overall this indicates that SLA archaeosomes are highly stable adjuvants that retain their activity over an extended period of time even when stored at high temperatures.


Assuntos
Lipossomos , Vacinas , Antígenos Arqueais , Imunidade Celular , Lipídeos
4.
J Immunol ; 190(3): 1066-75, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23277488

RESUMO

CD8(+) T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8(+) T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8(+) T cells are not clear. We show in this study that the transcription factor, FoxO3a, does not influence Ag presentation and the consequent expansion of CD8(+) T cell response during Listeria monocytogenes infection, but plays a key role in the maintenance of memory CD8(+) T cells. The effector function of primed CD8(+) T cells as revealed by cytokine secretion and CD107a degranulation was not influenced by inactivation of FoxO3a. Interestingly, FoxO3a-deficient CD8(+) T cells displayed reduced expression of proapoptotic molecules BIM and PUMA during the various phases of response, and underwent reduced apoptosis in comparison with wild-type cells. A higher number of memory precursor effector cells and memory subsets was detectable in FoxO3a-deficient mice compared with wild-type mice. Furthermore, FoxO3a-deficient memory CD8(+) T cells upon transfer into normal or RAG1-deficient mice displayed enhanced survival. These results suggest that FoxO3a acts in a cell-intrinsic manner to regulate the survival of primed CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fatores de Transcrição Forkhead/imunologia , Memória Imunológica/imunologia , Listeriose/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/imunologia , Animais , Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Linfócitos T CD8-Positivos/metabolismo , Citocinas/sangue , Citotoxicidade Imunológica , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/deficiência , Proteínas de Homeodomínio/genética , Selectina L/biossíntese , Selectina L/genética , Listeria monocytogenes/imunologia , Listeriose/sangue , Subpopulações de Linfócitos/metabolismo , Linfocinas/metabolismo , Proteínas de Membrana Lisossomal/imunologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/genética , Ovalbumina/imunologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Receptores de Interleucina-7/biossíntese , Receptores de Interleucina-7/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
5.
Vaccine ; 42(1): 40-52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042697

RESUMO

The virus-like particle (VLP) platform is a robust inducer of humoral and cellular immune responses; hence, it has been used in vaccine development for several infectious diseases. In the current work, VLPs carrying SARS-CoV-2 Spike (S) protein (Wuhan strain) with an HIV-1 Gag core were produced using suspension HEK 293SF-3F6 cells by transient transfection. The Gag was fused with green fluorescent protein (GFP) for rapid quantification of the VLPs. Five different versions of Gag-Spike VLPs (Gag-S-VLPs) consisting of Gag-S alone or combined with other SARS-CoV-2 components, namely Gag-S-Nucleocapsid (N), Gag-S-Matrix (M), Gag-S-Envelope (E), Gag-S-MEN, along with Gag alone were produced and processed by clarification, nuclease treatment, concentration by tangential flow filtration (TFF) and diafiltration. A pilot mouse study was performed to evaluate the immunogenicity of the Gag-S-VLPs through the measurement of the humoral and/or cellular responses against all the mentioned SARS-CoV-2 components. Antibody response to Spike was observed in all variants. The highest number of Spike-specific IFN-γ + T cells was detected with Gag-S-VLPs. No induction of antigen-specific cellular responses to M, N or E proteins were detected with any of the Gag-S, M, E/or N VLPs tested. Therefore, the Gag-S-VLP, by reason of consistently eliciting strong antigen-specific cellular and antibody responses, was selected for further evaluation. The purification process was improved by replacing the conventional centrifugation by serial microfiltration in the clarification step, followed by Spike-affinity chromatography to get concentrated VLPs with higher purity. Three different doses of Gag-S-VLP in conjunction with two adjuvants (Quil-A or AddaVax) were used to assess the dose-dependent antigen-specific cellular and antibody responses in mice. The Gag-S-VLP adjuvanted with Quil-A resulted in a stronger Spike-specific cellular response compared to that adjuvanted with AddaVax. A strong spike neutralisation activity was observed for all doses, independent of the adjuvant combination.


Assuntos
COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Adjuvantes Imunológicos , COVID-19/prevenção & controle , Polissorbatos , SARS-CoV-2
6.
J Immunol ; 187(3): 1192-200, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21715683

RESUMO

After vaccination, memory CD8(+) T cells migrate to different organs to mediate immune surveillance. In most nonlymphoid organs, following an infection, CD8(+) T cells differentiate to become long-lived effector-memory cells, thereby providing long-term protection against a secondary infection. In this study, we demonstrated that Ag-specific CD8(+) T cells that migrate to the mouse brain following a systemic Listeria infection do not display markers reminiscent of long-term memory cells. In contrast to spleen and other nonlymphoid organs, none of the CD8(+) T cells in the brain reverted to a memory phenotype, and all of the cells were gradually eliminated. These nonmemory phenotype CD8(+) T cells were found primarily within the choroid plexus, as well as in the cerebrospinal fluid-filled spaces. Entry of these CD8(+) T cells into the brain was governed primarily by CD49d/VCAM-1, with the majority of entry occurring in the first week postinfection. When CD8(+) T cells were injected directly into the brain parenchyma, cells that remained in the brain retained a highly activated (CD69(hi)) phenotype and were gradually lost, whereas those that migrated out to the spleen were CD69(low) and persisted long-term. These results revealed a mechanism of time-bound immune surveillance to the brain by CD8(+) T cells that do not reside in the parenchyma.


Assuntos
Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Vigilância Imunológica , Listeriose/líquido cefalorraquidiano , Listeriose/imunologia , Ativação Linfocitária/imunologia , Animais , Encéfalo/microbiologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/transplante , Movimento Celular/imunologia , Sobrevivência Celular/imunologia , Células Cultivadas , Epitopos de Linfócito T/líquido cefalorraquidiano , Epitopos de Linfócito T/imunologia , Feminino , Memória Imunológica , Imunofenotipagem , Listeria monocytogenes/imunologia , Listeriose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Biomedicines ; 11(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672648

RESUMO

Inflammatory bowel disease (IBD) is a chronic ailment afflicting millions of people worldwide, with the majority of recognized cases within industrialized countries. The impacts of IBD at the individual level are long-lasting with few effective treatments available, resulting in a large burden on the health care system. A number of existing animal models are utilized to evaluate novel treatment strategies. Two commonly used models are (1) acute colitis mediated by dextran sulphate sodium (DSS) treatment of wild-type mice and (2) chronic colitis mediated by the transfer of proinflammatory T cells into immunodeficient mice. Despite the wide use of these particular systems to evaluate IBD therapeutics, the typical readouts of clinical disease progression vary depending on the model used, which may be reflective of mechanistic differences of disease induction. The most reliable indicator of disease in both models remains intestinal damage which is typically evaluated upon experimental endpoint. Herein, we evaluated the expression profile of a panel of cytokines and chemokines in both DSS and T cell transfer models in an effort to identify a number of inflammatory markers in the blood that could serve as reliable indicators of the relative disease state. Out of the panel of 25 markers tested, 6 showed statistically significant shifts with the DSS model, compared to 11 in the T cell transfer model with IL-6, IL-13, IL-22, TNF-α and IFN-γ being common markers of disease in both models. Our data highlights biological differences between animal models of IBD and helps to guide future studies when selecting efficacy readouts during the evaluation of experimental IBD therapeutics.

8.
Commun Med (Lond) ; 3(1): 116, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612423

RESUMO

BACKGROUND: As the COVID-19 pandemic continues to evolve, novel vaccines need to be developed that are readily manufacturable and provide clinical efficacy against emerging SARS-CoV-2 variants. Virus-like particles (VLPs) presenting the spike antigen at their surface offer remarkable benefits over other vaccine antigen formats; however, current SARS-CoV-2 VLP vaccines candidates in clinical development suffer from challenges including low volumetric productivity, poor spike antigen density, expression platform-driven divergent protein glycosylation and complex upstream/downstream processing requirements. Despite their extensive use for therapeutic protein manufacturing and proven ability to produce enveloped VLPs, Chinese Hamster Ovary (CHO) cells are rarely used for the commercial production of VLP-based vaccines. METHODS: Using CHO cells, we aimed to produce VLPs displaying the full-length SARS-CoV-2 spike. Affinity chromatography was used to capture VLPs released in the culture medium from engineered CHO cells expressing spike. The structure, protein content, and glycosylation of spikes in VLPs were characterized by several biochemical and biophysical methods. In vivo, the generation of neutralizing antibodies and protection against SARS-CoV-2 infection was tested in mouse and hamster models. RESULTS: We demonstrate that spike overexpression in CHO cells is sufficient by itself to generate high VLP titers. These VLPs are evocative of the native virus but with at least three-fold higher spike density. In vivo, purified VLPs elicit strong humoral and cellular immunity at nanogram dose levels which grant protection against SARS-CoV-2 infection. CONCLUSIONS: Our results show that CHO cells are amenable to efficient manufacturing of high titers of a potently immunogenic spike protein-based VLP vaccine antigen.


Virus-like particles (VLPs) have a structure that is similar to viruses but they cannot cause infection or illness. If VLPs are injected into the body they produce an immune response similar to that seen following infection by a virus. This means that VLPs can be used as vaccines against viruses that cause illness in people. Many drugs, named biologics, are manufactured using living cells, including cells that were originally derived from Chinese Hamster Ovaries (CHO cells). We developed a simple method to produce VLPs similar to the SARS-CoV-2 virus in CHO cells. We show that vaccination of rodents with these VLPs prevents them from becoming ill following infection with SARS-CoV-2. These VLPs could become a part of an alternative, easily produced vaccine for the prevention of COVID-19 in humans.

9.
Front Immunol ; 14: 1182556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122746

RESUMO

Liposomes composed of sulfated lactosyl archaeol (SLA) have been shown to be a safe and effective vaccine adjuvant with a multitude of antigens in preclinical studies. In particular, SLA-adjuvanted SARS-CoV-2 subunit vaccines based on trimeric spike protein antigens were shown to be immunogenic and efficacious in mice and hamsters. With the continued emergence of SARS-CoV-2 variants, we sought to evaluate next-generation vaccine formulations with an updated antigenic identity. This was of particular interest for the widespread Omicron variant, given the abundance of mutations and structural changes observed within its spike protein compared to other variants. An updated version of our resistin-trimerized SmT1 corresponding to the B.1.1.529 variant was successfully generated in our Chinese Hamster Ovary (CHO) cell-based antigen production platform and characterized, revealing some differences in protein profile and ACE2 binding affinity as compared to reference strain-based SmT1. We next evaluated this Omicron-based spike antigen for its immunogenicity and ability to generate robust antigen-specific immune responses when paired with SLA liposomes or AddaS03 (a mimetic of the AS03 oil-in-water emulsion adjuvant system found in commercialized SARS-CoV-2 protein vaccines). Immunization of mice with vaccine formulations containing this updated antigen with either adjuvant stimulated neutralizing antibody responses favouring Omicron over the reference strain. Cell-mediated responses, which play an important role in the neutralization of intracellular infections, were induced to a much higher degree with the SLA adjuvant relative to the AddaS03-adjuvanted formulations. As such, updated vaccines that are better capable of targeting towards SARS-CoV-2 variants can be generated through an optimized combination of antigen and adjuvant components.


Assuntos
Adjuvantes de Vacinas , COVID-19 , Cricetinae , Animais , Camundongos , SARS-CoV-2 , Glicolipídeos , Sulfatos , Células CHO , Lipossomos , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , Cricetulus , Imunidade Celular , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Archaea , Vacinas contra COVID-19
10.
Vaccines (Basel) ; 11(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376432

RESUMO

Vaccines play an important role in maintaining human and animal health worldwide. There is continued demand for effective and safe adjuvants capable of enhancing antigen-specific responses to a target pathogen. Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that often induces high mortality rates in rabbits. Herein, we evaluated the activity of an experimental sulfated lactosyl archaeol (SLA) archaeosome adjuvant when incorporated in subunit vaccine formulations targeting RHDV. The subunit antigens consisted of RHDV-CRM197 peptide conjugates or recombinant RHDV2 VP60. SLA was able to enhance antigen-specific antibody titers and cellular responses in mice and rabbits. Three weeks following immunization, antigen-specific antibody levels in rabbits vaccinated with RHDV2 VP60 + SLA were significantly higher than those immunized with antigen alone, with geomean titers of 7393 vs. 117. In addition, the SLA-adjuvanted VP60-based formulations were highly efficacious in a rabbit RHDV2 challenge model with up to 87.5% animals surviving the viral challenge. These findings demonstrate the potential utility of SLA adjuvants in veterinary applications and highlight its activity in different types of mammalian species.

11.
J Med Chem ; 65(12): 8332-8344, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35658102

RESUMO

Archaeosomes composed of sulfated lactosyl archaeol (SLA) glycolipids from stereoisomerically pure archaeol (1) are vaccine adjuvants that can boost immunogenicity and vaccine efficacy in preclinical models. Herein, we report a new synthesis of 2,3-bis((3,7,11,15-tetramethylhexadecyl)oxy) propan-1-ol (3) by treating (±)-3-benzyloxy-1,2-propanediol with a mesylated phytol derivative through a double nucleophilic substitution reaction, followed by reductive debenzylation. Three SLA archaeosomes from archaeols of different chiral purities were prepared, and the effect of stereochemistry on their adjuvanticity toward ovalbumin was investigated. It was found that all SLA archaeosomes induced strong humoral and cell-mediated antigen-specific immune responses following immunization of C57BL/6NCrl mice, with no significant differences, irrespective of the chiral purities. The responses were comparable or better than those obtained using mimetics of approved adjuvants. The performance of SLA archaeosomes during immunization and their lack of dependence on the stereochemistry of archaeol points toward a promising, safe, scalable, and economically viable vaccine adjuvant system.


Assuntos
Glicolipídeos , Lipossomos , Adjuvantes Imunológicos/farmacologia , Animais , Glicolipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina
12.
Pharmaceutics ; 14(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365110

RESUMO

Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. They have classically been prepared using a thin-film hydration method with an average particle size of 100-200 nm. In this study, we developed methods to generate SLA archaeosomes at different sizes, i.e., 30 nm and 100 nm, via microfluidic mixing technology and evaluated their physicochemical characteristics, as well as adjuvant activity and in vivo biodistribution in mice. Archaeosomes, prepared using thin-film and microfluidic mixing techniques, had similar nanostructures and physicochemical characteristics, with both appearing stable during the course of this study when stored at 4 °C or 37 °C. They also demonstrated similar adjuvant activity when admixed with ovalbumin antigen and used to immunize mice, generating equivalent antigen-specific immune responses. Archaeosomes, labeled with CellVueTM NIR815, had an equivalent biodistribution with both sizes, namely the highest signal at the injection site at 24 h post injection, followed by liver, spleen and inguinal lymph node. The presence of SLA archaeosomes of either size helped to retain OVA antigen (OVA-Cy5.5) longer at the injection site than unadjuvanted OVA. Overall, archaeosomes of two sizes (30 nm and 100 nm) prepared using microfluidic mixing maintained similar physicochemical properties, adjuvant activity and biodistribution of antigen, in comparison to those compared by the conventional thin film hydration method. This suggests that microfluidics based approaches could be applied to generate consistently sized archaeosomes for use as a vaccine adjuvant.

13.
Sci Rep ; 12(1): 9772, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697917

RESUMO

With the persistence of the SARS-CoV-2 pandemic and the emergence of novel variants, the development of novel vaccine formulations with enhanced immunogenicity profiles could help reduce disease burden in the future. Intranasally delivered vaccines offer a new modality to prevent SARS-CoV-2 infections through the induction of protective immune responses at the mucosal surface where viral entry occurs. Herein, we evaluated a novel protein subunit vaccine formulation containing a resistin-trimerized prefusion Spike antigen (SmT1v3) and a proteosome-based mucosal adjuvant (BDX301) formulated to enable intranasal immunization. In mice, the formulation induced robust antigen-specific IgG and IgA titers, in the blood and lungs, respectively. In addition, the formulations were highly efficacious in a hamster challenge model, reducing viral load and body weight loss. In both models, the serum antibodies had strong neutralizing activity, preventing the cellular binding of the viral Spike protein based on the ancestral reference strain, the Beta (B.1.351) and Delta (B.1.617.2) variants of concern. As such, this intranasal vaccine formulation warrants further development as a novel SARS-CoV-2 vaccine.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Imunização , Camundongos , SARS-CoV-2
14.
NPJ Vaccines ; 7(1): 118, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224247

RESUMO

Using our strongly immunogenic SmT1 SARS-CoV-2 spike antigen platform, we developed antigens based on the Beta & Delta variants of concern (VOC). These antigens elicited higher neutralizing antibody activity to the corresponding variant than comparable vaccine formulations based on the original reference strain, while a multivalent vaccine generated cross-neutralizing activity in all three variants. This suggests that while current vaccines may be effective at reducing severe disease to existing VOC, variant-specific antigens, whether in a mono- or multivalent vaccine, may be required to induce optimal immune responses and reduce infection against arising variants.

15.
J Immunol ; 183(12): 7710-8, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19923462

RESUMO

Ag presentation to T cells orchestrates the development of acquired immune response. Although it is considered that Ag presentation may persist at high levels during chronic infections, we have previously reported that in mice infected with bacillus Calmette-Guérin, Ag presentation gets drastically curtailed during the chronic stage of infection despite antigenic persistence. In this report we evaluated the mechanism of this curtailment. Ag presentation declined precipitously as the T cell response developed, and Ag presentation was not curtailed in mice that were deficient in CD8(+) T cells or MHC class II, suggesting that T cells regulate Ag presentation. Curtailment of Ag presentation was reduced in IFN-gamma-deficient mice, but not in mice with a deficiency/mutation in inducible NOS2, perforin, or Fas ligand. In hosts with no T cells (Rag1(-/-)), Ag presentation was not curtailed during the chronic stage of infection. However, adoptive transfer of wild-type, but not IFN-gamma(-/-), CD4(+) and CD8(+) T cells into Rag1-deficient hosts strongly curtailed Ag presentation. Increased persistence of Ag presentation in IFN-gamma-deficient hosts correlated to increased survival of dendritic cells, but not of macrophages, and was not due to increased stimulatory capacity of IFN-gamma-deficient dendritic cells. These results reveal a novel mechanism indicating how IFN-gamma prevents the persistence of Ag presentation, thereby preventing memory T cells from going into exhaustion.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Inibidores do Crescimento/fisiologia , Interferon gama/biossíntese , Interferon gama/fisiologia , Animais , Apresentação de Antígeno/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Doença Crônica , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Inibidores do Crescimento/biossíntese , Inibidores do Crescimento/genética , Memória Imunológica/genética , Interferon gama/deficiência , Interferon gama/genética , Listeriose/microbiologia , Listeriose/patologia , Listeriose/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Tuberculose/patologia , Tuberculose/prevenção & controle
16.
Methods Mol Biol ; 2183: 549-558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959267

RESUMO

Herein, a method to measure in vivo CD8+ T cell cytotoxicity in a murine model is presented. The activation of a strong CD8+ T cell response is paramount when designing vaccines to tackle intracellular infections and for cancer therapy. CD8+ T cells can directly kill infected and transformed cells and are directly associated with beneficial protection in many disease models. CD8+ T cell cytotoxicity can be measured using multiple methods including measuring IFNγ production by ELISPOT or measuring intracellular cytokines or cytotoxic granules by flow cytometry. However, to determine the ability of CD8+ T cells to kill their target in the context of its cognate receptor and in their native environment, the in vivo cytotoxic T cell assay (in vivo CTL) is ideal. The in vivo CTL assay provides a snapshot of the whole ability of the host to kill "Target" cells by measuring the loss of injected target cells relative to "Non-target" cells. The assay involves isolating splenocytes from donor mice, forming "Target" and "Non-target" cellular samples and injecting them intravenously into naïve and experimental mice at a chosen time-point in the experiment. Mice are humanely sacrificed 20 h later, and their spleens are excised and processed for flow cytometric analysis. The extent of "Target" cell killing relative to "Non-target" cells is determined by comparing the surviving proportions of these cells among experimental mice relative to naïve mice. The in vivo CTL assay is a rapid, sensitive, and reliable method to measure the potency of CD8+ T cells in their host to kill their target.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Animais , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Imunidade Celular , Imunização , Imunofenotipagem , Camundongos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Vacinas/imunologia
17.
Pharmaceutics ; 13(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540932

RESUMO

Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. SLA archaeosomes are a promising adjuvant candidate due to their ability to strongly stimulate both humoral and cytotoxic immune responses when simply admixed with an antigen. In the present study, we evaluated whether the adjuvant effects of SLA archaeosomes could be further enhanced when combined with other adjuvants. SLA archaeosomes were co-administered with five different Toll-like Receptor (TLR) agonists or the saponin QS-21 using ovalbumin as a model antigen in mice. Both humoral and cellular immune responses were greatly enhanced compared to either adjuvant alone when SLA archaeosomes were combined with either the TLR3 agonist poly(I:C) or the TLR9 agonist CpG. These results were also confirmed in a separate study using Hepatitis B surface antigen (HBsAg) and support the further evaluation of these adjuvant combinations.

18.
Pharmaceutics ; 13(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673382

RESUMO

Cancer remains a leading cause of morbidity and mortality worldwide. While novel treatments have improved survival outcomes for some patients, new treatment modalities/platforms are needed to combat a wider variety of tumor types. Cancer vaccines harness the power of the immune system to generate targeted tumor-specific immune responses. Liposomes composed of glycolipids derived from archaea (i.e., archaeosomes) have been shown to be potent adjuvants, inducing robust, long-lasting humoral and cell-mediated immune responses to a variety of antigens. Herein, we evaluated the ability of archaeosomes composed of sulfated lactosyl archaeol (SLA), a semi-synthetic archaeal glycolipid, to enhance the immunogenicity of a synthetic long peptide-based vaccine formulation containing the dominant CD8+ T cell epitope, SIINFEKL, from the weakly immunogenic model antigen ovalbumin. One advantage of immunizing with long peptides is the ability to include multiple epitopes, for example, the long peptide antigen was also designed to include the immediately adjacent CD4+ epitope, TEWTSSNVMEER. SLA archaeosomes were tested alone or in combination with the toll-like receptor 3 (TLR3) agonist Poly(I:C). Overall, SLA archaeosomes synergized strongly with Poly(I:C) to induce robust antigen-specific CD8+ T cell responses, which were highly functional in an in vivo cytolytic assay. Furthermore, immunization with this vaccine formulation suppressed tumor growth and extended mouse survival in a mouse melanoma tumor model. Overall, the combination of SLA archaeosomes and Poly(I:C) appears to be a promising adjuvant system when used along with long peptide-based antigens targeting cancer.

19.
Sci Rep ; 11(1): 21849, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750472

RESUMO

The huge worldwide demand for vaccines targeting SARS-CoV-2 has necessitated the continued development of novel improved formulations capable of reducing the burden of the COVID-19 pandemic. Herein, we evaluated novel protein subunit vaccine formulations containing a resistin-trimerized spike antigen, SmT1. When combined with sulfated lactosyl archaeol (SLA) archaeosome adjuvant, formulations induced robust antigen-specific humoral and cellular immune responses in mice. Antibodies had strong neutralizing activity, preventing viral spike binding and viral infection. In addition, the formulations were highly efficacious in a hamster challenge model reducing viral load and body weight loss even after a single vaccination. The antigen-specific antibodies generated by our vaccine formulations had stronger neutralizing activity than human convalescent plasma, neutralizing the spike proteins of the B.1.1.7 and B.1.351 variants of concern. As such, our SmT1 antigen along with SLA archaeosome adjuvant comprise a promising platform for the development of efficacious protein subunit vaccine formulations for SARS-CoV-2.


Assuntos
Adjuvantes Imunológicos/química , Antígenos Arqueais/química , Vacinas contra COVID-19/uso terapêutico , Lipídeos/química , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Peso Corporal , COVID-19/terapia , Chlorocebus aethiops , Cricetinae , Citocinas/metabolismo , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Passiva , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Peptídeos/química , Domínios Proteicos , SARS-CoV-2 , Receptores Toll-Like/imunologia , Células Vero , Carga Viral , Soroterapia para COVID-19
20.
J Immunol ; 181(3): 1700-9, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18641306

RESUMO

Memory T cells are critical for the control of intracellular pathogens and require few signals for maintenance; however, erosion of established preexisting memory CD8(+) T cells has been shown to occur during infection with heterologous viral infections. We evaluated whether this also occurs during infection with various intracellular bacteria and what mechanisms may be involved. We demonstrate that erosion of established memory is also induced during infection of mice with various intracellular bacteria, such as Listeria monocytogenes, Salmonella typhimurium, and Mycobacterium bovis (bacillus Calmette-Guérin). The extent of erosion of established CD8(+) T cell memory was dependent on the virulence of the heterologous pathogen, not persistence. Furthermore, when antibiotics were used to comprehensively eliminate the heterologous pathogen, the numbers of memory CD8(+) T cells were not restored, indicating that erosion of preexisting memory CD8(+) T cells was irreversible. Irrespective of the initial numbers of memory CD8(+) T cells, challenge with the heterologous pathogen resulted in a similar extent of erosion of memory CD8(+) T cells, suggesting that cellular competition was not responsible for erosion. After challenge with the heterologous pathogen, effector memory CD8(+) T cells were rapidly eliminated. More importantly, erosion of preexisting memory CD8(+) T cells was abrogated in the absence of IFN-gamma. These studies help reveal the paradoxical role of IFN-gamma. Although IFN-gamma promotes the control of intracellular bacterial replication during primary infection, this comes at the expense of erosion of preexisting memory CD8(+) T cells in the wake of infection with heterologous pathogens.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Interferon gama/imunologia , Listeriose/imunologia , Infecções por Salmonella/imunologia , Tuberculose/imunologia , Animais , Antígenos/imunologia , Células Cultivadas , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Interferon gama/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Camundongos , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Baço/imunologia , Baço/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA