Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 141(4): 618-31, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20478254

RESUMO

Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.


Assuntos
MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Adaptação à Escuridão , Regulação para Baixo , Células-Tronco Embrionárias , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Neurônios Retinianos/metabolismo , Regulação para Cima
2.
PLoS Comput Biol ; 16(7): e1007857, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667921

RESUMO

In many cases of inherited retinal degenerations, ganglion cells are spared despite photoreceptor cell death, making it possible to stimulate them to restore visual function. Several studies have shown that it is possible to express an optogenetic protein in ganglion cells and make them light sensitive, a promising strategy to restore vision. However the spatial resolution of optogenetically-reactivated retinas has rarely been measured, especially in the primate. Since the optogenetic protein is also expressed in axons, it is unclear if these neurons will only be sensitive to the stimulation of a small region covering their somas and dendrites, or if they will also respond to any stimulation overlapping with their axon, dramatically impairing spatial resolution. Here we recorded responses of mouse and macaque retinas to random checkerboard patterns following an in vivo optogenetic therapy. We show that optogenetically activated ganglion cells are each sensitive to a small region of visual space. A simple model based on this small receptive field predicted accurately their responses to complex stimuli. From this model, we simulated how the entire population of light sensitive ganglion cells would respond to letters of different sizes. We then estimated the maximal acuity expected by a patient, assuming it could make an optimal use of the information delivered by this reactivated retina. The obtained acuity is above the limit of legal blindness. Our model also makes interesting predictions on how acuity might vary upon changing the therapeutic strategy, assuming an optimal use of the information present in the retinal activity. Optogenetic therapy could thus potentially lead to high resolution vision, under conditions that our model helps to determinine.


Assuntos
Cegueira , Optogenética/métodos , Células Ganglionares da Retina/fisiologia , Animais , Cegueira/fisiopatologia , Cegueira/terapia , Terapia Genética , Macaca , Camundongos , Modelos Biológicos , Retina/fisiologia , Acuidade Visual/fisiologia
3.
Biochem Biophys Res Commun ; 527(2): 325-330, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31982136

RESUMO

Optogenetics is a biological technique that combines the advantageous spatial-temporal resolution of optics and genetic cell targeting to control cellular activity with unprecedented precision. It has found vast applications both in neurosciences and therapy, particularly in view of its application to restore vision in blind patients. Optogenetics requires the ectopic expression of a so-called opsin to render neurons sensitive to light. There are two types of opsins for modulating membrane potential of neurons: (i) microbial opsins from unicellular organisms that respond to a light stimulus by mediating a flow of ions across the membrane (ii) animal opsins that are naturally present in mammalian retinas that initiate G protein coupled signaling in response to light. The former category has been extensively employed for vision restoration in the past decade with two ongoing clinical trials employing microbial opsins to restore light sensation in retinitis pigmentosa patients. The latter subtype of animal opsins is emerging more recently as strong candidates to restore vision with the promise of greater light sensitivity and tolerability. In this review we will discuss each approach in view of its utility for vision restoration in retinal blindness.


Assuntos
Cegueira/terapia , Opsinas/genética , Optogenética/métodos , Degeneração Retiniana/terapia , Animais , Cegueira/genética , Cegueira/fisiopatologia , Humanos , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Visão Ocular
4.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028585

RESUMO

Human induced pluripotent stem cells (hiPSCs) promise a great number of future applications to investigate retinal development, pathophysiology and cell therapies for retinal degenerative diseases. Specific approaches to genetically modulate hiPSC would be valuable for all of these applications. Vectors based on adeno-associated virus (AAV) have shown the ability for gene delivery to retinal organoids derived from hiPSCs. Thus far, little work has been carried out to investigate mechanisms of AAV-mediated gene delivery and the potential advantages of engineered AAVs to genetically modify retinal organoids. In this study, we compared the early transduction efficiency of several recombinant and engineered AAVs in hiPSC-derived RPE cells and retinal organoids in relation to the availability of their cell-surface receptors and as a function of time. The genetic variant AAV2-7m8 had a superior transduction efficiency when applied at day 44 of differentiation on retinal organoids and provided long-lasting expressions for at least 4 weeks after infection without compromising cell viability. All of the capsids we tested transduced the hiPSC-RPE cells, with the AAV2-7m8 variant being the most efficient. Transduction efficiency was correlated with the presence of primary cell-surface receptors on the hiPS-derived organoids. Our study explores some of the mechanisms of cell attachment of AAVs and reports long-term gene expression resulting from gene delivery in retinal organoids.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/metabolismo , Retina/metabolismo , Animais , Terapia Genética , Variação Genética , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Receptores de Superfície Celular/metabolismo , Retina/citologia , Transdução Genética , Transgenes
5.
Stem Cells ; 35(5): 1176-1188, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28220575

RESUMO

Human induced pluripotent stem cells (hiPSCs) are potentially useful in regenerative therapies for retinal disease. For medical applications, therapeutic retinal cells, such as retinal pigmented epithelial (RPE) cells or photoreceptor precursors, must be generated under completely defined conditions. To this purpose, we have developed a two-step xeno-free/feeder-free (XF/FF) culture system to efficiently differentiate hiPSCs into retinal cells. This simple method, relies only on adherent hiPSCs cultured in chemically defined media, bypassing embryoid body formation. In less than 1 month, adherent hiPSCs are able to generate self-forming neuroretinal-like structures containing retinal progenitor cells (RPCs). Floating cultures of isolated structures enabled the differentiation of RPCs into all types of retinal cells in a sequential overlapping order, with the generation of transplantation-compatible CD73+ photoreceptor precursors in less than 100 days. Our XF/FF culture conditions allow the maintenance of both mature cones and rods in retinal organoids until 280 days with specific photoreceptor ultrastructures. Moreover, both hiPSC-derived retinal organoids and dissociated retinal cells can be easily cryopreserved while retaining their phenotypic characteristics and the preservation of CD73+ photoreceptor precursors. Concomitantly to neural retina, this process allows the generation of RPE cells that can be effortlessly amplified, passaged, and frozen while retaining a proper RPE phenotype. These results demonstrate that simple and efficient retinal differentiation of adherent hiPSCs can be accomplished in XF/FF conditions. This new method is amenable to the development of an in vitro GMP-compliant retinal cell manufacturing protocol allowing large-scale production and banking of hiPSC-derived retinal cells and tissues. Stem Cells 2017;35:1176-1188.


Assuntos
Células Alimentadoras/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Preservação Biológica , Epitélio Pigmentado da Retina/citologia , Adesão Celular , Diferenciação Celular , Linhagem Celular , Criopreservação , Humanos , Organoides/ultraestrutura , Células Fotorreceptoras/citologia
6.
Mol Ther ; 25(11): 2546-2560, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28807567

RESUMO

The majority of inherited retinal degenerations converge on the phenotype of photoreceptor cell death. Second- and third-order neurons are spared in these diseases, making it possible to restore retinal light responses using optogenetics. Viral expression of channelrhodopsin in the third-order neurons under ubiquitous promoters was previously shown to restore visual function, albeit at light intensities above illumination safety thresholds. Here, we report (to our knowledge, for the first time) activation of macaque retinas, up to 6 months post-injection, using channelrhodopsin-Ca2+-permeable channelrhodopsin (CatCh) at safe light intensities. High-level CatCh expression was achieved due to a new promoter based on the regulatory region of the gamma-synuclein gene (SNCG) allowing strong expression in ganglion cells across species. Our promoter, in combination with clinically proven adeno-associated virus 2 (AAV2), provides CatCh expression in peri-foveolar ganglion cells responding robustly to light under the illumination safety thresholds for the human eye. On the contrary, the threshold of activation and the proportion of unresponsive cells were much higher when a ubiquitous promoter (cytomegalovirus [CMV]) was used to express CatCh. The results of our study suggest that the inclusion of optimized promoters is key in the path to clinical translation of optogenetics.


Assuntos
Channelrhodopsins/genética , Vetores Genéticos/administração & dosagem , Regiões Promotoras Genéticas , Recuperação de Função Fisiológica , Degeneração Retiniana/terapia , Animais , Channelrhodopsins/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Injeções Intravítreas , Luz , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Transdução Genética , Transgenes , Visão Ocular/fisiologia
7.
Adv Exp Med Biol ; 1074: 69-73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721929

RESUMO

The expression of light-sensitive microbial opsins is a promising mutation-independent approach to restore vision in retinal degenerative diseases. Using viral vectors, optogenetic tools can be genetically expressed in various subpopulations of retinal neurons. The choice of cell type depends on the availability of surviving retinal cells. If cones are still alive but they lack outer segments, they can be targeted with optogenetic inhibitors, such as halorhodopsin. Alternatively, it is possible to bypass the photoreceptors and to target bipolar cells. In late-stage degeneration, when bipolar cells degenerate, "artificial photoreceptors" can be made from retinal ganglion cells, but with this approach, upstream retinal processing cannot be utilized. However, when ganglion cells are stimulated directly, higher brain regions might be able to compensate for some loss of retinal processing, which is indicated by clinical studies with epiretinal implants, where patients can perform simple visual tasks. Finally, optogenetics in combination with neuroprotective approaches could serve as a valuable strategy to restore the function of remaining cells, as well as to rescue retinal neurons from progressive degeneration.


Assuntos
Vetores Genéticos/uso terapêutico , Optogenética/métodos , Degeneração Retiniana/terapia , Rodopsinas Microbianas/uso terapêutico , Células Amácrinas/fisiologia , Dependovirus/genética , Humanos , Fármacos Neuroprotetores/uso terapêutico , Especificidade de Órgãos , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Rodopsinas Microbianas/genética , Próteses Visuais
8.
Mol Ther ; 23(1): 7-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25095892

RESUMO

Most inherited retinal dystrophies display progressive photoreceptor cell degeneration leading to severe visual impairment. Optogenetic reactivation of retinal neurons mediated by adeno-associated virus (AAV) gene therapy has the potential to restore vision regardless of patient-specific mutations. The challenge for clinical translatability is to restore a vision as close to natural vision as possible, while using a surgically safe delivery route for the fragile degenerated retina. To preserve the visual processing of the inner retina, we targeted ON bipolar cells, which are still present at late stages of disease. For safe gene delivery, we used a recently engineered AAV variant that can transduce the bipolar cells after injection into the eye's easily accessible vitreous humor. We show that AAV encoding channelrhodopsin under the ON bipolar cell-specific promoter mediates long-term gene delivery restricted to ON-bipolar cells after intravitreal administration. Channelrhodopsin expression in ON bipolar cells leads to restoration of ON and OFF responses at the retinal and cortical levels. Moreover, light-induced locomotory behavior is restored in treated blind mice. Our results support the clinical relevance of a minimally invasive AAV-mediated optogenetic therapy for visual restoration.


Assuntos
Cegueira/terapia , Dependovirus/genética , Terapia Genética/métodos , Células Bipolares da Retina/metabolismo , Degeneração Retiniana/terapia , Animais , Comportamento Animal , Cegueira/genética , Cegueira/patologia , Channelrhodopsins , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Engenharia Genética , Vetores Genéticos , Injeções Intravítreas , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Células Bipolares da Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Percepção Visual/genética , Corpo Vítreo
9.
Curr Opin Neurol ; 28(1): 51-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25545056

RESUMO

PURPOSE OF REVIEW: This review will discuss retinal gene therapy strategies with a focus on mutation-independent approaches to treat a large number of patients without knowledge of the mutant gene. These approaches rely on the secretion of neurotrophic factors to slow down retinal degeneration and the use of optogenetics to restore vision in late-stage disease. RECENT FINDINGS: Success in clinical application of adeno-associated virus (AAV)-mediated gene therapy for Leber's congenital amaurosis established the feasibility of retinal gene therapy. More clinical trials are currently on their way for recessive diseases with known mutations. However, the genetic and mechanistic diversity of the retinal diseases presents an enormous obstacle for the development of gene therapies tailored to each patient-specific mutation. To extend gene therapy's promise to a large number of patients, evidence suggests retina-specific trophic factors, such as rod-derived cone viability factor, can be used to slow down loss of cone cells responsible for our high acuity vision. In parallel, it has been shown that microbial opsins are able to restore light sensitivity when expressed in blind retinas. SUMMARY: Recent findings imply that using the viral technology that has been demonstrated as well tolerated in patients, there are opportunities to develop widely applicable gene therapeutic interventions in clinical ophthalmology.


Assuntos
Proteínas do Olho/genética , Terapia Genética/métodos , Mutação , Doenças Retinianas/terapia , Dependovirus , Vetores Genéticos , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Doenças Retinianas/genética
10.
Curr Opin Ophthalmol ; 26(3): 226-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759964

RESUMO

PURPOSE OF REVIEW: In this review, we will discuss the recent developments in optogenetics and their potential applications in ophthalmology to restore vision in retinal degenerative diseases. RECENT FINDINGS: In recent years, we have seen major advances in the field of optogenetics, providing us with novel opsins for potential applications in the retina. Microbial opsins with improved light sensitivity and red-shifted action spectra allow optogenetic stimulation at light levels well below the safety threshold in the human eye. In parallel, remarkable success in the development of highly efficient viral vectors for ocular gene therapy led to new strategies of using these novel optogenetic tools for vision restoration. SUMMARY: These recent findings show that novel optogenetic tools and viral vectors for ocular gene delivery are now available providing many opportunities to develop potential optogenetic strategies for vision restoration.


Assuntos
Optogenética/métodos , Degeneração Retiniana/reabilitação , Transtornos da Visão/reabilitação , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos
11.
Nat Methods ; 6(2): 127-30, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19122667

RESUMO

We developed retrograde, transsynaptic pseudorabies viruses (PRVs) with genetically encoded activity sensors that optically report the activity of connected neurons among spatially intermingled neurons in the brain. Next we engineered PRVs to express two differentially colored fluorescent proteins in a time-shifted manner to define a time period early after infection to investigate neural activity. Finally we used multiple-colored PRVs to differentiate and dissect the complex architecture of brain regions.


Assuntos
Proteínas de Fluorescência Verde/análise , Herpesvirus Suídeo 1/metabolismo , Proteínas Luminescentes/análise , Transmissão Sináptica/fisiologia , Vias Visuais/virologia , Animais , Técnicas Biossensoriais/métodos , Encéfalo/citologia , Encéfalo/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Herpesvirus Suídeo 1/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Neurônios/fisiologia , Neurônios/virologia , Fatores de Tempo , Vias Visuais/fisiologia , Proteína Vermelha Fluorescente
12.
Mol Ther Methods Clin Dev ; 24: 1-10, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34977267

RESUMO

Over the last 15 years, optogenetics has changed fundamental research in neuroscience and is now reaching toward therapeutic applications. Vision restoration strategies using optogenetics are now at the forefront of these new clinical opportunities. But applications to human patients suffering from retinal diseases leading to blindness raise important concerns on the long-term functional expression of optogenes and the efficient signal transmission to higher visual centers. Here, we demonstrate in non-human primates continued expression and functionality at the retina level ∼20 months after delivery of our construct. We also performed in vivo recordings of visually evoked potentials in the primary visual cortex of anesthetized animals. Using synaptic blockers, we isolated the in vivo cortical activation resulting from the direct optogenetic stimulation of primate retina. In conclusion, our work indicates long-term transgene expression and transmission of the signal generated in the macaque retina to the visual cortex, two important features for future clinical applications.

13.
Front Cell Neurosci ; 15: 648210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815066

RESUMO

Human-induced pluripotent stem cell (hiPSC) derived organoids have become increasingly used systems allowing 3D-modeling of human organ development, and disease. They are also a reliable source of cells for transplantation in cell therapy and an excellent model to validate gene therapies. To make full use of these systems, a toolkit of genetic modification techniques is necessary to control their activity in line with the downstream application. We have previously described adeno-associated viruse (AAV) vectors for efficient targeting of cells within human retinal organoids. Here, we describe biological restriction and enhanced gene expression in cone cells of such organoids thanks to the use of a 1.7-kb L-opsin promoter. We illustrate the usefulness of implementing such a promoter to enhance the expression of the red-shifted opsin Jaws in fusion with a fluorescent reporter gene, enabling cell sorting to enrich the desired cell population. Increased Jaws expression after transplantation improved light responses promising better therapeutic outcomes in a cell therapy setting. Our results point to the importance of promoter activity in restricting, improving, and controlling the kinetics of transgene expression during the maturation of hiPSC retinal derivatives. Differentiation requires mechanisms to initiate specific transcriptional changes and to reinforce those changes when mature cell states are reached. By employing a cell-type-specific promoter we put transgene expression under the new transcriptional program of mature cells.

14.
Nat Med ; 27(7): 1223-1229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031601

RESUMO

Optogenetics may enable mutation-independent, circuit-specific restoration of neuronal function in neurological diseases. Retinitis pigmentosa is a neurodegenerative eye disease where loss of photoreceptors can lead to complete blindness. In a blind patient, we combined intraocular injection of an adeno-associated viral vector encoding ChrimsonR with light stimulation via engineered goggles. The goggles detect local changes in light intensity and project corresponding light pulses onto the retina in real time to activate optogenetically transduced retinal ganglion cells. The patient perceived, located, counted and touched different objects using the vector-treated eye alone while wearing the goggles. During visual perception, multichannel electroencephalographic recordings revealed object-related activity above the visual cortex. The patient could not visually detect any objects before injection with or without the goggles or after injection without the goggles. This is the first reported case of partial functional recovery in a neurodegenerative disease after optogenetic therapy.


Assuntos
Cegueira/fisiopatologia , Cegueira/terapia , Terapia Genética/métodos , Optogenética/métodos , Retinose Pigmentar/patologia , Ondas Encefálicas/fisiologia , Dependovirus/genética , Dispositivos de Proteção dos Olhos , Vetores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Células Fotorreceptoras/fisiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
15.
Commun Biol ; 4(1): 125, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504896

RESUMO

Vision restoration is an ideal medical application for optogenetics, because the eye provides direct optical access to the retina for stimulation. Optogenetic therapy could be used for diseases involving photoreceptor degeneration, such as retinitis pigmentosa or age-related macular degeneration. We describe here the selection, in non-human primates, of a specific optogenetic construct currently tested in a clinical trial. We used the microbial opsin ChrimsonR, and showed that the AAV2.7m8 vector had a higher transfection efficiency than AAV2 in retinal ganglion cells (RGCs) and that ChrimsonR fused to tdTomato (ChR-tdT) was expressed more efficiently than ChrimsonR. Light at 600 nm activated RGCs transfected with AAV2.7m8 ChR-tdT, from an irradiance of 1015 photons.cm-2.s-1. Vector doses of 5 × 1010 and 5 × 1011 vg/eye transfected up to 7000 RGCs/mm2 in the perifovea, with no significant immune reaction. We recorded RGC responses from a stimulus duration of 1 ms upwards. When using the recorded activity to decode stimulus information, we obtained an estimated visual acuity of 20/249, above the level of legal blindness (20/400). These results lay the groundwork for the ongoing clinical trial with the AAV2.7m8 - ChR-tdT vector for vision restoration in patients with retinitis pigmentosa.


Assuntos
Optogenética , Estimulação Luminosa , Degeneração Retiniana/terapia , Visão Ocular/fisiologia , Animais , Equipamentos e Provisões , Feminino , Humanos , Macaca fascicularis , Masculino , Optogenética/instrumentação , Optogenética/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/instrumentação , Estimulação Luminosa/métodos , Primatas , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/reabilitação , Terapias em Estudo/instrumentação , Terapias em Estudo/métodos
16.
Neuron ; 49(1): 81-94, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16387641

RESUMO

A somatodendritic gradient of Cl(-) concentration ([Cl(-)](i)) has been postulated to generate GABA-evoked responses of different polarity in retinal bipolar cells, hyperpolarizing in OFF cells with low dendritic [Cl(-)](i), and depolarizing in ON cells with high dendritic [Cl(-)](i). As glutamate released by the photoreceptors depolarizes OFF cells and hyperpolarizes ON cells, the bipolars' antagonistic receptive field (RF) could be computed by simply integrating glutamatergic inputs from the RF center and GABAergic inputs from horizontal cells in the RF surround. Using ratiometric two-photon imaging of Clomeleon, a Cl(-) indicator transgenically expressed in ON bipolar cells, we found that dendritic [Cl(-)](i) exceeds somatic [Cl(-)](i) by up to 20 mM and that GABA application can lead to Cl(-) efflux (depolarization) in these dendrites. Blockers of Cl(-) transporters reduced the somatodendritic [Cl(-)](i) gradient. Hence, our results support the idea that ON bipolar cells employ a somatodendritic [Cl(-)](i) gradient to invert GABAergic horizontal cell input.


Assuntos
Cloretos/metabolismo , Dendritos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Células Bipolares da Retina/metabolismo , Animais , Técnicas Biossensoriais , Calibragem , Diagnóstico por Imagem , GABAérgicos/farmacologia , Homeostase , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Transgênicos/genética , Concentração Osmolar , Fótons , Proteínas Recombinantes de Fusão/genética , Células Bipolares da Retina/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
17.
Cell Rep ; 33(1): 108220, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027659

RESUMO

Axonal arbors in many neuronal networks are exuberant early during development and become refined by activity-dependent competitive mechanisms. Theoretical work proposed non-competitive interactions between co-active axons to co-stabilize their connections, but the demonstration of such interactions is lacking. Here, we provide experimental evidence that reducing cyclic AMP (cAMP) signaling in a subset of retinal ganglion cells favors the elimination of thalamic projections from neighboring neurons, pointing to a cAMP-dependent interaction that promotes axon stabilization.


Assuntos
Axônios/metabolismo , AMP Cíclico/metabolismo , Neurônios/metabolismo , Humanos , Transdução de Sinais
18.
Front Cell Dev Biol ; 8: 585675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195235

RESUMO

Optic neuropathies are a major cause of visual impairment due to retinal ganglion cell (RGC) degeneration. Human induced-pluripotent stem cells (iPSCs) represent a powerful tool for studying both human RGC development and RGC-related pathological mechanisms. Because RGC loss can be massive before the diagnosis of visual impairment, cell replacement is one of the most encouraging strategies. The present work describes the generation of functional RGCs from iPSCs based on innovative 3D/2D stepwise differentiation protocol. We demonstrate that targeting the cell surface marker THY1 is an effective strategy to select transplantable RGCs. By generating a fluorescent GFP reporter iPSC line to follow transplanted cells, we provide evidence that THY1-positive RGCs injected into the vitreous of mice with optic neuropathy can survive up to 1 month, intermingled with the host RGC layer. These data support the usefulness of iPSC-derived RGC exploration as a potential future therapeutic strategy for optic nerve regeneration.

19.
Nat Commun ; 10(1): 4524, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586094

RESUMO

A major challenge in the treatment of retinal degenerative diseases, with the transplantation of replacement photoreceptors, is the difficulty in inducing the grafted cells to grow and maintain light sensitive outer segments in the host retina, which depends on proper interaction with the underlying retinal pigment epithelium (RPE). Here, for an RPE-independent treatment approach, we introduce a hyperpolarizing microbial opsin into photoreceptor precursors from newborn mice, and transplant them into blind mice lacking the photoreceptor layer. These optogenetically-transformed photoreceptors are light responsive and their transplantation leads to the recovery of visual function, as shown by ganglion cell recordings and behavioral tests. Subsequently, we generate cone photoreceptors from human induced pluripotent stem cells, expressing the chloride pump Jaws. After transplantation into blind mice, we observe light-driven responses at the photoreceptor and ganglion cell levels. These results demonstrate that structural and functional retinal repair is possible by combining stem cell therapy and optogenetics.


Assuntos
Engenharia Celular/métodos , Optogenética/métodos , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/terapia , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células/métodos , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Células HEK293 , Halorrodopsinas/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Knockout , Degeneração Retiniana/genética , Rodopsina/genética , Transfecção , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA