Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8030): 646-653, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39143220

RESUMO

Guanidine is a chemically stable nitrogen compound that is excreted in human urine and is widely used in manufacturing of plastics, as a flame retardant and as a component of propellants, and is well known as a protein denaturant in biochemistry1-3. Guanidine occurs widely in nature and is used by several microorganisms as a nitrogen source, but microorganisms growing on guanidine as the only substrate have not yet been identified. Here we show that the complete ammonia oxidizer (comammox) Nitrospira inopinata and probably most other comammox microorganisms can grow on guanidine as the sole source of energy, reductant and nitrogen. Proteomics, enzyme kinetics and the crystal structure of a N. inopinata guanidinase homologue demonstrated that it is a bona fide guanidinase. Incubation experiments with comammox-containing agricultural soil and wastewater treatment plant microbiomes suggested that guanidine serves as substrate for nitrification in the environment. The identification of guanidine as a growth substrate for comammox shows an unexpected niche of these globally important nitrifiers and offers opportunities for their isolation.


Assuntos
Amônia , Guanidina , Modelos Moleculares , Oxirredução , Guanidina/metabolismo , Guanidina/química , Amônia/metabolismo , Nitrificação , Águas Residuárias/química , Águas Residuárias/microbiologia , Microbiota , Cristalografia por Raios X , Microbiologia do Solo , Nitrogênio/metabolismo , Cinética , Proteômica , Especificidade por Substrato
2.
Appl Environ Microbiol ; 89(12): e0115123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38051071

RESUMO

IMPORTANCE: Biological wastewater treatment relies on complex microbial communities that assimilate nutrients and break down pollutants in the wastewater. Knowledge about the physiology and metabolism of bacteria in wastewater treatment plants (WWTPs) may therefore be used to improve the efficacy and economy of wastewater treatment. Our current knowledge is largely based on 16S rRNA gene amplicon profiling, fluorescence in situ hybridization studies, and predictions based on metagenome-assembled genomes. Bacterial isolates are often required to validate genome-based predictions as they allow researchers to analyze a specific species without interference from other bacteria and with simple bulk measurements. Unfortunately, there are currently very few pure cultures representing the microbes commonly found in WWTPs. To address this, we introduce an isolation strategy that takes advantage of state-of-the-art microbial profiling techniques to uncover suitable growth conditions for key WWTP microbes. We furthermore demonstrate that this information can be used to isolate key organisms representing global WWTPs.


Assuntos
Bactérias , Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Águas Residuárias
3.
J Environ Manage ; 344: 118677, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556895

RESUMO

Soils host diverse communities of microorganisms essential for ecosystem functions and soil health. Despite their importance, microorganisms are not covered by legislation protecting biodiversity or habitats, such as the Habitats Directive. Advances in molecular methods have caused breakthroughs in microbial community analysis, and recent studies have shown that parts of the communities are habitat-specific. If distinct microbial communities are present in the habitat types defined in the Habitats Directive, the Directive may be improved by including these communities. Thus, monitoring and reporting of biodiversity and conservation status of habitat types could be based not only on plant communities but also on microbial communities. In the present study, bacterial and plant communities were examined in six habitat types defined in the Habitats Directive by conducting botanical surveys and collecting soil samples for amplicon sequencing across 19 sites in Denmark. Furthermore, selected physico-chemical properties expected to differ between habitat types and explain variations in community composition of bacteria and vegetation were analysed (pH, electrical conductivity (EC), soil texture, soil water repellency, soil organic carbon content (OC), inorganic nitrogen, and in-situ water content (SWC)). Despite some variations within the same habitat type and overlaps between habitat types, habitat-specific communities were observed for both bacterial and plant communities, but no correlation was observed between the alpha diversity of vegetation and bacteria. PERMANOVA analysis was used to evaluate the variables best able to explain variation in the community composition of vegetation and bacteria. Habitat type alone could explain 46% and 47% of the variation in bacterial and plant communities, respectively. Excluding habitat type as a variable, the best model (pH, SWC, OC, fine silt, and Shannon's diversity index for vegetation) could explain 37% of the variation for bacteria. For vegetation, the best model (pH, EC, ammonium content and Shannon's diversity index for bacteria) could explain 25% of the variation. Based on these results, bacterial communities could be included in the Habitats Directive to improve the monitoring, as microorganisms are more sensitive to changes in the environment compared to vegetation, which the current monitoring is based on.


Assuntos
Ecossistema , Microbiota , Carbono/análise , Solo/química , Microbiologia do Solo , Biodiversidade , Plantas , Água/análise , Bactérias/genética
4.
Proc Natl Acad Sci U S A ; 116(38): 19116-19125, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31427514

RESUMO

Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Deltaproteobacteria/genética , Deltaproteobacteria/fisiologia , Genoma Bacteriano , Proteoma/análise , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Ciclo do Carbono , Movimento Celular , Quimiotaxia , Citocromos/metabolismo , Deltaproteobacteria/classificação , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Nitratos/metabolismo , Oxirredução , Oxigênio/metabolismo , Filogenia , Homologia de Sequência , Sulfetos/metabolismo
5.
J Biol Chem ; 291(51): 26540-26553, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27784787

RESUMO

Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea. It has antimicrobial properties and disrupts the ordered structure of amyloid fibrils involved in human disease. The antimicrobial effect of EGCG against the opportunistic pathogen Pseudomonas aeruginosa has been shown to involve disruption of quorum sensing (QS). Functional amyloid fibrils in P. aeruginosa (Fap) are able to bind and retain quorum-sensing molecules, suggesting that EGCG interferes with QS through structural remodeling of amyloid fibrils. Here we show that EGCG inhibits the ability of Fap to form fibrils; instead, EGCG stabilizes protein oligomers. Existing fibrils are remodeled by EGCG into non-amyloid aggregates. This fibril remodeling increases the binding of pyocyanin, demonstrating a mechanism by which EGCG can affect the QS function of functional amyloid. EGCG reduced the amyloid-specific fluorescent thioflavin T signal in P. aeruginosa biofilms at concentrations known to exert an antimicrobial effect. Nanoindentation studies showed that EGCG reduced the stiffness of biofilm containing Fap fibrils but not in biofilm with little Fap. In a combination treatment with EGCG and tobramycin, EGCG had a moderate effect on the minimum bactericidal eradication concentration against wild-type P. aeruginosa biofilms, whereas EGCG had a more pronounced effect when Fap was overexpressed. Our results provide a direct molecular explanation for the ability of EGCG to disrupt P. aeruginosa QS and modify its biofilm and strengthens the case for EGCG as a candidate in multidrug treatment of persistent biofilm infections.


Assuntos
Amiloide/biossíntese , Proteínas de Bactérias/biossíntese , Biofilmes/efeitos dos fármacos , Catequina/análogos & derivados , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Tobramicina/farmacologia , Benzotiazóis , Biofilmes/crescimento & desenvolvimento , Catequina/farmacologia , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Tiazóis/farmacologia
6.
J Biol Chem ; 290(33): 20590-600, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26109065

RESUMO

Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold.


Assuntos
Amiloide/fisiologia , Methanosarcinales/fisiologia , Amiloide/biossíntese , Methanosarcinales/metabolismo , Microscopia Eletrônica de Transmissão , Espectrometria de Massas em Tandem
7.
J Biol Chem ; 290(10): 6457-69, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25586180

RESUMO

The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.


Assuntos
Amiloide/química , Biofilmes , Pseudomonas aeruginosa/química , Percepção de Quorum/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Amiloide/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Dobramento de Proteína , Pseudomonas aeruginosa/genética
8.
J Am Chem Soc ; 138(1): 402-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26684612

RESUMO

Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated for in vivo imaging of P. aeruginosa in implant and corneal infection mice models.


Assuntos
Amiloide/química , Biofilmes , Corantes Fluorescentes , Pseudomonas aeruginosa/química
9.
Proteomics ; 15(18): 3244-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122999

RESUMO

The physiological adaptation to stationary growth by Pseudomonas putida F1, a model organism for the degradation of aromatic compounds, was investigated by proteome-wide label-free quantification.The data unveiled that entrance to the stationary phase did not involve an abrupt switch within the P. putida F1 proteome, but rather an ongoing adaptation that started already during the mid-exponential growth phase. The proteomic adaptations involved a clear increase in amino acid degradation capabilities and a loss of transcriptional as well as translational capacity. The final entrance to the stationary phase was accompanied by increased oxidative stress protection, although the stress and stationary sigma factor RpoS increased in abundance already during mid-exponential growth. The results show that it is important to consider significant sample variations when exponentially growing cultures are studied alone or compared across proteomic or transcriptomic literature. All MS data have been deposited in the ProteomeXchange with identifier PXD001219 (http://proteomecentral.proteomexchange.org/dataset/PXD001219).


Assuntos
Proteínas de Bactérias/análise , Proteoma/análise , Proteômica/métodos , Pseudomonas putida/metabolismo , Pseudomonas putida/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Bases de Dados de Proteínas , Proteoma/química , Proteoma/metabolismo
10.
J Proteome Res ; 14(1): 72-81, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25317949

RESUMO

The newly identified functional amyloids in Pseudomonas (Fap) are associated with increased aggregation and biofilm formation in the opportunistic pathogen P. aeruginosa; however, whether this phenomenon can be simply ascribed to the mechanical properties of the amyloid fibrils remains undetermined. To gain a deeper understanding of the Fap-mediated biofilm formation, the physiological consequences of Fap expression were investigated using label-free protein quantification. The functional amyloids were found to not solely act as inert structural biofilm components. Their presence induced major changes in the global proteome of the bacterium. These included the lowered abundance of classical virulence factors such as elastase B and the secretion system of alkaline protease A. Amyloid-mediated biofilm formation furthermore increased abundance of the alginate and pyoverdine synthesis machinery, which turned P. aeruginosa PAO1 into an unexpected mucoid phenotype. The results imply a significant impact of functional amyloids on the physiology of P. aeruginosa with subsequent implications for biofilm formation and chronic infections.


Assuntos
Amiloide/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Humanos , Biossíntese de Proteínas , Proteômica
11.
mSystems ; : e0030124, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254351

RESUMO

In wastewater treatment plants (WWTPs), complex microbial communities process diverse chemical compounds from sewage. Secreted proteins are critical because many are the first to interact with or degrade external (macro)molecules. To better understand microbial functions in WWTPs, we predicted secreted proteomes of WWTP microbiota from more than 1,000 high-quality metagenome-assembled genomes (MAGs) from 23 Danish WWTPs with biological nutrient removal. Focus was placed on examining secreted catabolic exoenzymes that target major classes of macromolecules. We demonstrate that Bacteroidota has a high potential to digest complex polysaccharides, but also proteins and nucleic acids. Poorly understood activated sludge members of Acidobacteriota and Gemmatimonadota also have high capacities for extracellular polysaccharide digestion. Secreted nucleases are encoded by 61% of MAGs indicating an importance for extracellular DNA and/or RNA digestion in WWTPs. Secreted lipases were the least common macromolecule-targeting enzymes predicted, encoded mainly by Gammaproteobacteria and Myxococcota. In contrast, diverse taxa encode extracellular peptidases, indicating that proteins are widely used nutrients. Diverse secreted multi-heme cytochromes suggest capabilities for extracellular electron transfer by various taxa, including some Bacteroidota that encode undescribed cytochromes with >100 heme-binding motifs. Myxococcota have exceptionally large secreted protein complements, probably related to predatory lifestyles and/or complex cell cycles. Many Gammaproteobacteria MAGs (mostly former Betaproteobacteria) encode few or no secreted hydrolases, but many periplasmic substrate-binding proteins and ABC- and TRAP-transporters, suggesting they are mostly sustained by small molecules. Together, this study provides a comprehensive overview of how WWTPs microorganisms interact with the environment, providing new insights into their functioning and niche partitioning.IMPORTANCEWastewater treatment plants (WWTPs) are critical biotechnological systems that clean wastewater, allowing the water to reenter the environment and limit eutrophication and pollution. They are also increasingly important for the recovery of resources. They function primarily by the activity of microorganisms, which act as a "living sponge," taking up and transforming nutrients, organic material, and pollutants. Despite much research, many microorganisms in WWTPs are uncultivated and poorly characterized, limiting our understanding of their functioning. Here, we analyzed a large collection of high-quality metagenome-assembled genomes from WWTPs for encoded secreted enzymes and proteins, with special emphasis on those used to degrade organic material. This analysis showed highly distinct secreted proteome profiles among different major phylogenetic groups of microorganisms, thereby providing new insights into how different groups function and co-exist in activated sludge. This knowledge will contribute to a better understanding of how to efficiently manage and exploit WWTP microbiomes.

12.
Mol Ecol Resour ; : e13991, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979877

RESUMO

The use of short-read metabarcoding for classifying microeukaryotes is challenged by the lack of comprehensive 18S rRNA reference databases. While recent advances in high-throughput long-read sequencing provide the potential to greatly increase the phylogenetic coverage of these databases, the performance of different sequencing technologies and subsequent bioinformatics processing remain to be evaluated, primarily because of the absence of well-defined eukaryotic mock communities. To address this challenge, we created a eukaryotic rRNA operon clone-library and turned it into a precisely defined synthetic eukaryotic mock community. This mock community was then used to evaluate the performance of three long-read sequencing strategies (PacBio circular consensus sequencing and two Nanopore approaches using unique molecular identifiers) and three tools for resolving amplicons sequence variants (ASVs) (USEARCH, VSEARCH, and DADA2). We investigated the sensitivity of the sequencing techniques based on the number of detected mock taxa, and the accuracy of the different ASV-calling tools with a specific focus on the presence of chimera among the final rRNA operon ASVs. Based on our findings, we provide recommendations and best practice protocols for how to cost-effectively obtain essentially error-free rRNA operons in high-throughput. An agricultural soil sample was used to demonstrate that the sequencing and bioinformatic results from the mock community also translates to highly diverse natural samples, which enables us to identify previously undescribed microeukaryotic lineages.

13.
Curr Opin Biotechnol ; 89: 103192, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216163

RESUMO

Biofilms play important roles in water technologies such as membrane treatments and activated sludge. The extracellular polymeric substances (EPS) are key components of biofilms. However, the precise nature of these substances and how they influence biofilm formation and behavior remain critical knowledge gaps. EPS are produced by many different microorganisms and span multiple biopolymer classes, which each require distinct strategies for characterization. The biopolymers additionally associate with each other to form insoluble complexes. Here, we explore recent progress toward resolving the structures and functions of EPS, where a shift towards direct functional assessments and advanced characterization techniques is necessary. This will enable integration with better microbial community and omics analyses to understand EPS biosynthesis pathways and create further opportunities for EPS control and valorization.


Assuntos
Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Purificação da Água/métodos , Biopolímeros/química , Biopolímeros/metabolismo
14.
Microbiome ; 12(1): 55, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493180

RESUMO

BACKGROUND: Microorganisms are responsible for nutrient removal and resource recovery in wastewater treatment plants (WWTPs), and their diversity is often studied by 16S rRNA gene amplicon sequencing. However, this approach underestimates the abundance and diversity of Patescibacteria due to the low coverage of commonly used PCR primers for this highly divergent bacterial phylum. Therefore, our current understanding of the global diversity, distribution, and ecological role of Patescibacteria in WWTPs is very incomplete. This is particularly relevant as Patescibacteria are considered to be associated with microbial host cells and can therefore influence the abundance and temporal variability of other microbial groups that are important for WWTP functioning. RESULTS: Here, we evaluated the in silico coverage of widely used 16S rRNA gene-targeted primer pairs and redesigned a primer pair targeting the V4 region of bacterial and archaeal 16S rRNA genes to expand its coverage for Patescibacteria. We then experimentally evaluated and compared the performance of the original and modified V4-targeted primers on 565 WWTP samples from the MiDAS global sample collection. Using the modified primer pair, the percentage of ASVs classified as Patescibacteria increased from 5.9 to 23.8%, and the number of detected patescibacterial genera increased from 560 to 1576, while the detected diversity of the remaining microbial community remained similar. Due to this significantly improved coverage of Patescibacteria, we identified 23 core genera of Patescibacteria in WWTPs and described the global distribution pattern of these unusual microbes in these systems. Finally, correlation network analysis revealed potential host organisms that might be associated with Patescibacteria in WWTPs. Interestingly, strong indications were found for an association between Patescibacteria of the Saccharimonadia and globally abundant polyphosphate-accumulating organisms of the genus Ca. Phosphoribacter. CONCLUSIONS: Our study (i) provides an improved 16S rRNA gene V4 region-targeted amplicon primer pair inclusive of Patescibacteria with little impact on the detection of other taxa, (ii) reveals the diversity and distribution patterns of Patescibacteria in WWTPs on a global scale, and (iii) provides new insights into the ecological role and potential hosts of Patescibacteria in WWTPs. Video Abstract.


Assuntos
Microbiota , Purificação da Água , Águas Residuárias , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Bactérias/genética , Microbiota/genética
15.
Environ Microbiome ; 19(1): 63, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210447

RESUMO

BACKGROUND: The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km2). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence. RESULTS: We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km2). CONCLUSIONS: The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.

16.
Nat Commun ; 15(1): 5361, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918384

RESUMO

Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84-99% and 18-61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.


Assuntos
Archaea , Bactérias , Biodiversidade , Microbiota , Filogenia , RNA Ribossômico 16S , Archaea/genética , Archaea/classificação , Archaea/metabolismo , RNA Ribossômico 16S/genética , Anaerobiose , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Microbiota/genética , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Metano/metabolismo , Análise de Sequência de DNA
17.
mSystems ; 8(6): e0066723, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992299

RESUMO

IMPORTANCE: Chloroflexota are often abundant members of the biomass in wastewater treatment plants (WWTPs) worldwide, typically with a filamentous morphology, forming the backbones of the activated sludge floc. However, their overgrowth can often cause operational issues connected to poor settling or foaming, impairing effluent quality and increasing operational costs. Despite their importance, few Chloroflexota genera have been characterized so far. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide and an in-depth characterization of their morphology, phylogeny, and ecophysiology, obtaining a broad understanding of their ecological role in activated sludge.


Assuntos
Chloroflexi , Purificação da Água , Esgotos , Biomassa , Filogenia
18.
Microbiol Spectr ; 11(1): e0307122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475836

RESUMO

Persistence and survival of Pseudomonas aeruginosa in chronic lung infections is closely linked to the biofilm lifestyle. One biofilm component, functional amyloid of P. aeruginosa (Fap), imparts structural adaptations for biofilms; however, the role of Fap in pathogenesis is still unclear. Conservation of the fap operon encoding Fap and P. aeruginosa being an opportunistic pathogen of lung infections prompted us to explore its role in lung infection. We found that Fap is essential for establishment of lung infection in rats, as its genetic exclusion led to mild focal infection with quick resolution. Moreover, without an underlying cystic fibrosis (CF) genetic disorder, overexpression of Fap reproduced the CF pathotype. The molecular basis of Fap-mediated pulmonary adaptation was explored through surface-associated proteomics in vitro. Differential proteomics positively associated Fap expression with activation of known proteins related to pulmonary pathoadaptation, attachment, and biofilm fitness. The aggregative bacterial phenotype in the pulmonary niche correlated with Fap-influenced activation of biofilm sustainability regulators and stress response regulators that favored persistence-mediated establishment of pulmonary infection. Fap overexpression upregulated proteins that are abundant in the proteome of P. aeruginosa in colonizing CF lungs. Planktonic lifestyle, defects in anaerobic pathway, and neutrophilic evasion were key factors in the absence of Fap that impaired establishment of infection. We concluded that Fap is essential for cellular equilibration to establish pulmonary infection. Amyloid-induced bacterial aggregation subverted the immune response, leading to chronic infection by collaterally damaging tissue and reinforcing bacterial persistence. IMPORTANCE Pseudomonas aeruginosa is inextricably linked with chronic lung infections. In this study, the well-conserved Fap operon was found to be essential for pathoadaptation in pulmonary infection in a rat lung model. Moreover, the presence of Fap increased pathogenesis and biofilm sustainability by modulating bacterial physiology. Hence, a pathoadaptive role of Fap in pulmonary infections can be exploited for clinical application by targeting amyloids. Furthermore, genetic conservation and extracellular exposure of Fap make it a commendable target for such interventions.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Ratos , Animais , Pseudomonas aeruginosa/metabolismo , Proteoma/metabolismo , Infecções por Pseudomonas/microbiologia , Biofilmes , Pulmão/microbiologia , Fibrose Cística/microbiologia
19.
Water Res ; 229: 119485, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538841

RESUMO

A good floc formation of activated sludge (AS) is crucial for solid-liquid separation and production of clean effluent during wastewater treatment. Floc formation is partly controlled by self-produced extracellular polymeric substances (EPS) such as exopolysaccharides, proteins, and nucleic acids. Little is known about the composition, structure, and function of EPS in AS and which bacteria produce them. To address this knowledge gap for the exopolysaccharides, we took advantage of 1083 high-quality metagenome-assembled genomes (MAGs) obtained from 23 Danish wastewater treatment plants. We investigated the genomic potential for exopolysaccharide biosynthesis in bacterial species typical in AS systems based on genome mining and gene synteny analyses. Putative gene clusters associated with the biosynthesis of alginate, cellulose, curdlan, diutan, hyaluronic acids, Pel, poly-ß-1,6-N-acetyl-d-glucosamine (PNAG), Psl, S88 capsular polysaccharide, salecan, succinoglycan, and xanthan were identified and linked to individual MAGs, providing a comprehensive overview of the genome-resolved potential for these exopolysaccharides in AS bacteria. The approach and results provide a starting point for a more comprehensive understanding of EPS composition in wastewater treatment systems, which may facilitate a more refined regulation of the activated sludge process for improved stability.


Assuntos
Metagenômica , Esgotos , Esgotos/química , Bactérias/genética , Proteínas , Celulose
20.
Mol Neurodegener ; 18(1): 44, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403161

RESUMO

BACKGROUND: Braak's hypothesis states that sporadic Parkinson's disease (PD) follows a specific progression of pathology from the peripheral to the central nervous system, and this progression can be monitored by detecting the accumulation of alpha-Synuclein (α-Syn) protein. Consequently, there is growing interest in understanding how the gut (commensal) microbiome can regulate α-Syn accumulation, as this could potentially lead to PD. METHODS: We used 16S rRNA and shotgun sequencing to characterise microbial diversity. 1H-NMR was employed to understand the metabolite production and intestinal inflammation estimated using ELISA and RNA-sequencing from feces and the intestinal epithelial layer respectively. The Na+ channel current and gut permeability were measured using an Ussing chamber. Immunohistochemistry and immunofluorescence imaging were applied to detect the α-Syn protein. LC-MS/MS was used for characterization of proteins from metabolite treated neuronal cells. Finally, Metascape and Ingenuity Pathway Analysis (IPA) bioinformatics tools were used for identification of dysregulated pathways. RESULTS: We studied a transgenic (TG) rat model overexpressing the human SNCA gene and found that a progressive gut microbial composition alteration characterized by the reduction of Firmicutes to Bacteroidetes ratio could be detected in the young TG rats. Interestingly, this ratio then increased with ageing. The dynamics of Lactobacillus and Alistipes were monitored and reduced Lactobacillus and increased Alistipes abundance was discerned in ageing TG rats. Additionally, the SNCA gene overexpression resulted in gut α-Syn protein expression and increased with advanced age. Further, older TG animals had increased intestinal inflammation, decreased Na+ current and a robust alteration in metabolite production characterized by the increase of succinate levels in feces and serum. Manipulation of the gut bacteria by short-term antibiotic cocktail treatment revealed a complete loss of short-chain fatty acids and a reduction in succinate levels. Although antibiotic cocktail treatment did not change α-Syn expression in the enteric nervous system of the colon, however, reduced α-Syn expression was detected in the olfactory bulbs (forebrain) of the TG rats. CONCLUSION: Our data emphasize that the gut microbiome dysbiosis synchronous with ageing leads to a specific alteration of gut metabolites and can be modulated by antibiotics which may affect PD pathology.


Assuntos
Microbiota , Doença de Parkinson , Humanos , Ratos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Cromatografia Líquida , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem , Envelhecimento , Animais Geneticamente Modificados , Inflamação , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA