Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2305947121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289952

RESUMO

Optic neuropathies, characterized by injury of retinal ganglion cell (RGC) axons of the optic nerve, cause incurable blindness worldwide. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) represent a promising "cell-free" therapy for regenerative medicine; however, the therapeutic effect on neural restoration fluctuates, and the underlying mechanism is poorly understood. Here, we illustrated that intraocular administration of MSC-sEVs promoted both RGC survival and axon regeneration in an optic nerve crush mouse model. Mechanistically, MSC-sEVs primarily targeted retinal mural cells to release high levels of colony-stimulating factor 3 (G-CSF) that recruited a neural restorative population of Ly6Clow monocytes/monocyte-derived macrophages (Mo/MΦ). Intravitreal administration of G-CSF, a clinically proven agent for treating neutropenia, or donor Ly6Clow Mo/MΦ markedly improved neurological outcomes in vivo. Together, our data define a unique mechanism of MSC-sEV-induced G-CSF-to-Ly6Clow Mo/MΦ signaling in repairing optic nerve injury and highlight local delivery of MSC-sEVs, G-CSF, and Ly6Clow Mo/MΦ as therapeutic paradigms for the treatment of optic neuropathies.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos do Nervo Óptico , Camundongos , Animais , Axônios/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/terapia , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo
2.
PLoS Biol ; 19(12): e3001510, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932561

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Resistência à Doença/genética , Epistasia Genética , SARS-CoV-2/fisiologia , Aminoácidos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sítios de Ligação , COVID-19/enzimologia , COVID-19/genética , Cães , Evolução Molecular , Frequência do Gene , Humanos , Hidrólise , Camundongos , Mutação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral
3.
Ophthalmology ; 125(7): 1054-1063, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29525602

RESUMO

PURPOSE: To assess systemic vascular endothelial growth factor (VEGF)-A levels after treatment with intravitreous aflibercept, bevacizumab, or ranibizumab. DESIGN: Comparative-effectiveness trial with participants randomly assigned to 2 mg aflibercept, 1.25 mg bevacizumab, or 0.3 mg ranibizumab after a re-treatment algorithm. PARTICIPANTS: Participants with available plasma samples (N = 436). METHODS: Plasma samples were collected before injections at baseline and 4-week, 52-week, and 104-week visits. In a preplanned secondary analysis, systemic-free VEGF levels from an enzyme-linked immunosorbent assay were compared across anti-VEGF agents and correlated with systemic side effects. MAIN OUTCOME MEASURES: Changes in the natural log (ln) of plasma VEGF levels. RESULTS: Baseline free VEGF levels were similar across all 3 groups. At 4 weeks, mean ln(VEGF) changes were -0.30±0.61 pg/ml, -0.31±0.54 pg/ml, and -0.02±0.44 pg/ml for the aflibercept, bevacizumab, and ranibizumab groups, respectively. The adjusted differences between treatment groups (adjusted confidence interval [CI]; P value) were -0.01 (-0.12 to +0.10; P = 0.89), -0.31 (-0.44 to -0.18; P < 0.001), and -0.30 (-0.43 to -0.18; P < 0.001) for aflibercept-bevacizumab, aflibercept-ranibizumab, and bevacizumab-ranibizumab, respectively. At 52 weeks, a difference in mean VEGF changes between bevacizumab and ranibizumab persisted (-0.23 [-0.38 to -0.09]; P < 0.001); the difference between aflibercept and ranibizumab was -0.12 (P = 0.07) and between aflibercept and bevacizumab was +0.11 (P = 0.07). Treatment group differences at 2 years were similar to 1 year. No apparent treatment differences were detected at 52 or 104 weeks in the cohort of participants not receiving injections within 1 or 2 months before plasma collection. Participants with (N = 9) and without (N = 251) a heart attack or stroke had VEGF levels that appeared similar. CONCLUSIONS: These data suggest that decreases in plasma free-VEGF levels are greater after treatment with aflibercept or bevacizumab compared with ranibizumab at 4 weeks. At 52 and 104 weeks, a greater decrease was observed in bevacizumab versus ranibizumab. Results from 2 subgroups of participants who did not receive injections within at least 1 month and 2 months before collection suggest similar changes in VEGF levels after stopping injections. It is unknown whether VEGF levels return to normal as the drug is cleared from the system or whether the presence of the drug affects the assay's ability to accurately measure free VEGF. No significant associations between VEGF concentration and systemic factors were noted.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Edema Macular/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/sangue , Bevacizumab/uso terapêutico , Retinopatia Diabética/sangue , Retinopatia Diabética/diagnóstico , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Injeções Intravítreas , Edema Macular/sangue , Edema Macular/diagnóstico , Masculino , Pessoa de Meia-Idade , Ranibizumab/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Retratamento , Tomografia de Coerência Óptica , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual
4.
Proc Natl Acad Sci U S A ; 112(50): E6927-36, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621751

RESUMO

Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. Therapeutic strategies allowing rapid revascularization are greatly needed to reduce ischemia-induced cellular damage and suppress harmful pathologic neovascularization. However, key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing the transition from tissue injury to tissue repair, are largely unknown. NF-E2-related factor 2 (Nrf2) is a major stress-response transcription factor well known for its cell-intrinsic cytoprotective function. However, its role in cell-cell crosstalk is less appreciated. Here we report that Nrf2 is highly activated in ischemic retina and promotes revascularization by modulating neurons in their paracrine regulation of endothelial cells. Global Nrf2 deficiency strongly suppresses retinal revascularization and increases pathologic neovascularization in a mouse model of ischemic retinopathy. Conditional knockout studies demonstrate a major role for neuronal Nrf2 in vascular regrowth into avascular retina. Deletion of neuronal Nrf2 results in semaphorin 6A (Sema6A) induction in hypoxic/ischemic retinal ganglion cells in a hypoxia-inducible factor-1 alpha (HIF-1α)-dependent fashion. Sema6A expression increases in avascular inner retina and colocalizes with Nrf2 in human fetal eyes. Extracellular Sema6A leads to dose-dependent suppression of the migratory phenotype of endothelial cells through activation of Notch signaling. Lentiviral-mediated delivery of Sema6A small hairpin RNA (shRNA) abrogates the defective retinal revascularization in Nrf2-deficient mice. Importantly, pharmacologic Nrf2 activation promotes reparative angiogenesis and suppresses pathologic neovascularization. Our findings reveal a unique function of Nrf2 in reprogramming ischemic tissue toward neurovascular repair via Sema6A regulation, providing a potential therapeutic strategy for ischemic retinal and CNS diseases.


Assuntos
Isquemia/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Neurônios/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Semaforinas/metabolismo , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Isquemia/patologia , Camundongos , Neovascularização Patológica , Receptores Notch/metabolismo , Regeneração , Vasos Retinianos/patologia , Transdução de Sinais
5.
Exp Eye Res ; 154: 151-158, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27923559

RESUMO

Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions.


Assuntos
Apoptose , Regulação da Expressão Gênica , Luz/efeitos adversos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/metabolismo , Animais , Western Blotting , Contagem de Células , Linhagem Celular , Camundongos , Fator 2 Relacionado a NF-E2/biossíntese , Neuroproteção , Células Fotorreceptoras/patologia , Células Fotorreceptoras/efeitos da radiação , RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Degeneração Retiniana/genética , Degeneração Retiniana/patologia
6.
Biochim Biophys Acta ; 1851(3): 290-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25562624

RESUMO

We recently demonstrated that 12/15-lipoxygenase (LOX) derived metabolites, hydroxyeicosatetraenoic acids (HETEs), contribute to diabetic retinopathy (DR) via NADPH oxidase (NOX) and disruption of the balance in retinal levels of the vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). Here, we test whether PEDF ameliorates retinal vascular injury induced by HETEs and the underlying mechanisms. Furthermore, we pursue the causal relationship between LOX-NOX system and regulation of PEDF expression during DR. For these purposes, we used an experimental eye model in which normal mice were injected intravitreally with 12-HETE with/without PEDF. Thereafter, fluorescein angiography (FA) was used to evaluate the vascular leakage, followed by optical coherence tomography (OCT) to assess the presence of angiogenesis. FA and OCT reported an increased vascular leakage and pre-retinal neovascularization, respectively, in response to 12-HETE that were not observed in the PEDF-treated group. Moreover, PEDF significantly attenuated the increased levels of vascular cell and intercellular adhesion molecules, VCAM-1 and ICAM-1, elicited by 12-HETE injection. Accordingly, the direct relationship between HETEs and PEDF has been explored through in-vitro studies using Müller cells (rMCs) and human retinal endothelial cells (HRECs). The results showed that 12- and 15-HETEs triggered the secretion of TNF-α and IL-6, as well as activation of NFκB in rMCs and significantly increased permeability and reduced zonula occludens protein-1 (ZO-1) immunoreactivity in HRECs. All these effects were prevented in PEDF-treated cells. Furthermore, interest in PEDF regulation during DR has been expanded to include NOX system. Retinal PEDF was significantly restored in diabetic mice treated with NOX inhibitor, apocynin, or lacking NOX2 up to 80% of the control level. Collectively, our findings suggest that interfering with LOX-NOX signaling opens up a new direction for treating DR by restoring endogenous PEDF that carries out multilevel vascular protective functions.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/antagonistas & inibidores , Retinopatia Diabética/tratamento farmacológico , Proteínas do Olho/farmacologia , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Fatores de Crescimento Neural/farmacologia , Retina/efeitos dos fármacos , Neovascularização Retiniana/tratamento farmacológico , Serpinas/farmacologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Acetofenonas/farmacologia , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Regulação da Expressão Gênica , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Injeções Intravítreas , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteína da Zônula de Oclusão-1/genética
8.
Proc Natl Acad Sci U S A ; 110(41): E3910-8, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24062466

RESUMO

Angiogenesis, in which new blood vessels form via endothelial cell (EC) sprouting from existing vessels, is a critical event in embryonic development and multiple disease processes. Many insights have been made into key EC receptors and ligands/growth factors that govern sprouting angiogenesis, but intracellular molecular mechanisms of this process are not well understood. NF-E2-related factor 2 (Nrf2) is a transcription factor well-known for regulating the stress response in multiple pathologic settings, but its role in development is less appreciated. Here, we show that Nrf2 is increased and activated during vascular development. Global deletion of Nrf2 resulted in reduction of vascular density as well as EC sprouting. This was also observed with specific deletion of Nrf2 in ECs, but not with deletion of Nrf2 in the surrounding nonvascular tissue. Nrf2 deletion resulted in increased delta-like ligand 4 (Dll4) expression and Notch activity in ECs. Blockade of Dll4 or Notch signaling restored the vascular phenotype in Nrf2 KOs. Constitutive activation of endothelial Nrf2 enhanced EC sprouting and vascularization by suppression of Dll4/Notch signaling in vivo and in vitro. Nrf2 activation in ECs suppressed Dll4 expression under normoxia and hypoxia and inhibited Dll4-induced Notch signaling. Activation of Nrf2 blocked VEGF induction of VEGFR2-PI3K/Akt and downregulated HIF-2α in ECs, which may serve as important mechanisms for Nrf2 inhibition of Dll4 and Notch signaling. Our data reveal a function for Nrf2 in promoting the angiogenic sprouting phenotype in vascular ECs.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Fisiológica/fisiologia , Vasos Retinianos/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Bromodesoxiuridina , Proteínas de Ligação ao Cálcio , Crioultramicrotomia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microdissecção e Captura a Laser , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Notch/metabolismo , Retina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(36): E3425-34, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959876

RESUMO

Vision loss from ischemic retinopathies commonly results from the accumulation of fluid in the inner retina [macular edema (ME)]. Although the precise events that lead to the development of ME remain under debate, growing evidence supports a role for an ischemia-induced hyperpermeability state regulated, in part, by VEGF. Monthly treatment with anti-VEGF therapies is effective for the treatment of ME but results in a major improvement in vision in a minority of patients, underscoring the need to identify additional therapeutic targets. Using the oxygen-induced retinopathy mouse model for ischemic retinopathy, we provide evidence showing that hypoxic Müller cells promote vascular permeability by stabilizing hypoxia-inducible factor-1α (HIF-1α) and secreting angiogenic cytokines. Blocking HIF-1α translation with digoxin inhibits the promotion of endothelial cell permeability in vitro and retinal edema in vivo. Interestingly, Müller cells require HIF--but not VEGF--to promote vascular permeability, suggesting that other HIF-dependent factors may contribute to the development of ME. Using gene expression analysis, we identify angiopoietin-like 4 (ANGPTL4) as a cytokine up-regulated by HIF-1 in hypoxic Müller cells in vitro and the ischemic inner retina in vivo. ANGPTL4 is critical and sufficient to promote vessel permeability by hypoxic Müller cells. Immunohistochemical analysis of retinal tissue from patients with diabetic eye disease shows that HIF-1α and ANGPTL4 localize to ischemic Müller cells. Our results suggest that ANGPTL4 may play an important role in promoting vessel permeability in ischemic retinopathies and could be an important target for the treatment of ME.


Assuntos
Angiopoietinas/metabolismo , Permeabilidade Capilar , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neurônios Retinianos/metabolismo , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Animais , Western Blotting , Hipóxia Celular , Células Cultivadas , Retinopatia Diabética/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Neurônios Retinianos/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Cell Physiol ; 230(6): 1310-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25474999

RESUMO

Endothelial cells play a major role in the initiation and perpetuation of the inflammatory process in health and disease, including their pivotal role in leukocyte recruitment. The role of pro-inflammatory transcription factors in this process has been well-described, including NF-κB. However, much less is known regarding transcription factors that play an anti-inflammatory role in endothelial cells. Myocyte enhancer factor 2 C (MEF2C) is a transcription factor known to regulate angiogenesis in endothelial cells. Here, we report that MEF2C plays a critical function as an inhibitor of endothelial cell inflammation. Tumor necrosis factor (TNF)-α inhibited MEF2C expression in endothelial cells. Knockdown of MEF2C in endothelial cells resulted in the upregulation of pro-inflammatory molecules and stimulated leukocyte adhesion to endothelial cells. MEF2C knockdown also resulted in NF-κB activation in endothelial cells. Conversely, MEF2C overexpression by adenovirus significantly repressed TNF-α induction of pro-inflammatory molecules, activation of NF-κB, and leukocyte adhesion to endothelial cells. This inhibition of leukocyte adhesion by MEF2C was partially mediated by induction of KLF2. In mice, lipopolysaccharide (LPS)-induced leukocyte adhesion to the retinal vasculature was significantly increased by endothelial cell-specific ablation of MEF2C. Taken together, these results demonstrate that MEF2C is a novel negative regulator of inflammation in endothelial cells and may represent a therapeutic target for vascular inflammation.


Assuntos
Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Animais , Adesão Celular/fisiologia , Células Cultivadas , Endotélio Vascular/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Fatores de Transcrição MEF2/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
J Neurochem ; 133(2): 233-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683606

RESUMO

Retinal ischemia plays a critical role in multiple vision-threatening diseases and leads to death of retinal neurons, particularly ganglion cells. Oxidative stress plays an important role in this ganglion cell loss. Nrf2 (NF-E2-related factor 2) is a major regulator of the antioxidant response, and its role in the retina is increasingly appreciated. We investigated the potential retinal neuroprotective function of Nrf2 after ischemia-reperfusion (I/R) injury. In an experimental model of retinal I/R, Nrf2 knockout mice exhibited much greater loss of neuronal cells in the ganglion cell layer than wild-type mice. Primary retinal ganglion cells isolated from Nrf2 knockout mice exhibited decreased cell viability compared to wild-type retinal ganglion cells, demonstrating the cell-intrinsic protective role of Nrf2. The retinal neuronal cell line 661W exhibited reduced cell viability following siRNA-mediated knockdown of Nrf2 under conditions of oxidative stress, and this was associated with exacerbation of increase in reactive oxygen species. The synthetic triterpenoid CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), a potent Nrf2 activator, inhibited reactive oxygen species increase in cultured 661W under oxidative stress conditions and increased neuronal cell survival after I/R injury in wild-type, but not Nrf2 knockout mice. Our findings indicate that Nrf2 exhibits a retinal neuroprotective function in I/R and suggest that pharmacologic activation of Nrf2 could be a therapeutic strategy. Oxidative stress is thought to be an important mediator of retinal ganglion cell death in ischemia-reperfusion injury. We found that the transcription factor NF-E2-related factor 2 (Nrf2), a major regulator of oxidative stress, is an important endogenous neuroprotective molecule in retinal ganglion cells in ischemia-reperfusion, exerting a cell-autonomous protective effect.  The triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) reduces neurodegeneration following ischemia-reperfusion in an Nrf2-dependent fashion. This suggests that Nrf2-activating drugs including triterpenoids could be a therapeutic strategy for retinal neuroprotection.


Assuntos
Isquemia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Imidazóis/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , RNA Interferente Pequeno/farmacologia , Retina/citologia , Células Ganglionares da Retina/metabolismo , terc-Butil Hidroperóxido/farmacologia
12.
J Neuroinflammation ; 12: 239, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689280

RESUMO

BACKGROUND: Retinal ischemia results in neuronal degeneration and contributes to the pathogenesis of multiple blinding diseases. Recently, the fumaric acid ester dimethyl fumarate (DMF) has been FDA-approved for the treatment of multiple sclerosis, based on its neuroprotective and anti-inflammatory effects. Its potential role as a neuroprotective agent for retinal diseases has received little attention. In addition, DMF's mode of action remains elusive, although studies have suggested nuclear factor erythroid 2-related factor 2 (Nrf2) activation as an important mechanism. Here we investigated the neuroprotective role of monomethyl fumarate (MMF), the biologically active metabolite of DMF, in retinal ischemia-reperfusion (I/R) injury, and examined the role of Nrf2 in mediating MMF action. METHODS: Wild-type C57BL/6J and Nrf2 knockout (KO) mice were subjected to 90 min of retinal ischemia followed by reperfusion. Mice received daily intraperitoneal injection of MMF. Inflammatory gene expression was measured using quantitative reverse transcription PCR (qRT-PCR) at 48 h after I/R injury. Seven days after I/R, qRT-PCR for Nrf2 target gene expression, immunostaining for Müller cell gliosis and cell loss in the ganglion cell layer (GCL), and electroretinography for retinal function were performed. RESULTS: The results of this study confirmed that MMF reduces retinal neurodegeneration in an Nrf2-dependent manner. MMF treatment significantly increased the expression of Nrf2-regulated antioxidative genes, suppressed inflammatory gene expression, reduced Müller cell gliosis, decreased neuronal cell loss in the GCL, and improved retinal function measured by electroretinogram (ERG) after retinal I/R injury in wild-type mice. Importantly, these MMF-mediated beneficial effects were not observed in Nrf2 KO mice. CONCLUSIONS: These results indicate that fumaric acid esters (FAEs) exert a neuronal protective function in the retinal I/R model and further validate Nrf2 modulation as a major mode of action of FAEs. This suggests that DMF and FAEs could be a potential therapeutic agent for activation of the Nrf2 pathway in retinal and possibly systemic diseases.


Assuntos
Fumaratos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/patologia , Degeneração Retiniana/patologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/metabolismo , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Diabetologia ; 57(1): 204-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186494

RESUMO

AIMS/HYPOTHESIS: Although much is known about the pathophysiological processes contributing to diabetic retinopathy (DR), the role of protective pathways has received less attention. The transcription factor nuclear factor erythroid-2-related factor 2 (also known as NFE2L2 or NRF2) is an important regulator of oxidative stress and also has anti-inflammatory effects. The objective of this study was to explore the potential role of NRF2 as a protective mechanism in DR. METHODS: Retinal expression of NRF2 was investigated in human donor and mouse eyes by immunohistochemistry. The effect of NRF2 modulation on oxidative stress was studied in the human Müller cell line MIO-M1. Non-diabetic and streptozotocin-induced diabetic wild-type and Nrf2 knockout mice were evaluated for multiple DR endpoints. RESULTS: NRF2 was expressed prominently in Müller glial cells and astrocytes in both human and mouse retinas. In cultured MIO-M1 cells, NRF2 inhibition significantly decreased antioxidant gene expression and exacerbated tert-butyl hydroperoxide- and hydrogen peroxide-induced oxidative stress. NRF2 activation strongly increased NRF2 target gene expression and suppressed oxidant-induced reactive oxygen species. Diabetic mice exhibited retinal NRF2 activation, indicated by nuclear translocation. Superoxide levels were significantly increased by diabetes in Nrf2 knockout mice as compared with wild-type mice. Diabetic Nrf2 knockout mice exhibited a reduction in retinal glutathione and an increase in TNF-α protein compared with wild-type mice. Nrf2 knockout mice exhibited early onset of blood-retina barrier dysfunction and exacerbation of neuronal dysfunction in diabetes. CONCLUSIONS/INTERPRETATION: These results indicate that NRF2 is an important protective factor regulating the progression of DR and suggest enhancement of the NRF2 pathway as a potential therapeutic strategy.


Assuntos
Retinopatia Diabética/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular , Retinopatia Diabética/genética , Humanos , Masculino , Camundongos , Camundongos Mutantes , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia
14.
Mol Vis ; 20: 1740-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593504

RESUMO

PURPOSE: Chronic inflammation is a critical process in pterygium development and progression, including promotion of angiogenesis. Vascular endothelial cells (ECs) actively participate in and regulate inflammation. Pterygium research has uncovered multiple inflammatory cytokines that are upregulated, but there has been minimal focus on EC activation. The Receptor for Advanced Glycation Endproducts (RAGE), a major proinflammatory molecule expressed in the vascular endothelium and other cell types, is a major instigator of endothelial cell activation. In this study, we explored the hypothesis that RAGE is upregulated in ECs in pterygium. To this end, we examined RAGE expression and immunolocalization in human pterygium and normal conjunctival tissue, with a particular interest in assessing endothelial RAGE. METHODS: Pterygium specimens were obtained from 25 patients during surgery at the King Khaled Eye Specialist Hospital (KKESH). In the same patients, conjunctiva were obtained from the autograft during surgery. Tissue specimens were formalin-fixed and paraffin-embedded. Tissue sections were analyzed with immunohistochemistry with anti-RAGE antibody. Expression and localization of RAGE were evaluated in pterygium and corresponding conjunctiva. RESULTS: RAGE expression was detected in the vascular endothelium in all pterygium tissue specimens and most conjunctival specimens. Other cell types exhibited expression, notably epithelial cells, fibroblasts, and possibly macrophages. Strikingly, endothelial RAGE expression was increased in 19 of 25 pterygium tissue specimens, compared to the corresponding control conjunctiva. CONCLUSIONS: Our data reveal that RAGE expression is upregulated in vascular endothelial cells in pterygium. RAGE upregulation is an important mechanism by which endothelial cells amplify the overall inflammatory response, and suppression of RAGE has been shown to prevent the progression of some systemic disease processes in experimental models. This suggests that pharmacologic targeting of RAGE, which is already being attempted in clinical trials for some diseases, could be useful in treating pterygium.


Assuntos
Pterígio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Túnica Conjuntiva/irrigação sanguínea , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Pterígio/patologia , Recidiva , Regulação para Cima
15.
Ophthalmol Sci ; 4(3): 100449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313399

RESUMO

Purpose: To review the evidence for imaging modalities in assessing the vascular component of diabetic retinal disease (DRD), to inform updates to the DRD staging system. Design: Standardized narrative review of the literature by an international expert workgroup, as part of the DRD Staging System Update Effort, a project of the Mary Tyler Moore Vision Initiative. Overall, there were 6 workgroups: Vascular Retina, Neural Retina, Systemic Health, Basic and Cellular Mechanisms, Visual Function, and Quality of Life. Participants: The Vascular Retina workgroup, including 16 participants from 4 countries. Methods: Literature review was conducted using standardized evidence grids for 5 modalities: standard color fundus photography (CFP), widefield color photography (WFCP), standard fluorescein angiography (FA), widefield FA (WFFA), and OCT angiography (OCTA). Summary levels of evidence were determined on a validated scale from I (highest) to V (lowest). Five virtual workshops were held for discussion and consensus. Main Outcome Measures: Level of evidence for each modality. Results: Levels of evidence for standard CFP, WFCP, standard FA, WFFA, and OCTA were I, II, I, I, and II respectively. Traditional vascular lesions on standard CFP should continue to be included in an updated staging system, but more studies are required before they can be used in posttreatment eyes. Widefield color photographs can be used for severity grading within the area covered by standard CFPs, although these gradings may not be directly interchangeable with each other. Evaluation of the peripheral retina on WFCP can be considered, but the method of grading needs to be clarified and validated. Standard FA and WFFA provide independent prognostic value, but the need for dye administration should be considered. OCT angiography has significant potential for inclusion in the DRD staging system, but various barriers need to be addressed first. Conclusions: This study provides evidence-based recommendations on the utility of various imaging modalities for assessment of the vascular component of DRD, which can inform future updates to the DRD staging system. Although new imaging modalities offer a wealth of information, there are still major gaps and unmet research needs that need to be addressed before this potential can be realized. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

16.
Am J Pathol ; 180(6): 2548-60, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22521302

RESUMO

Ischemic retinopathies, including retinopathy of prematurity and diabetic retinopathy, are major causes of blindness. Both have two phases, vessel loss and consequent hypoxia-driven pathologic retinal neovascularization, yet relatively little is known about the transcription factors regulating these processes. Myocyte enhancer factor 2 (MEF2) C, a member of the MEF2 family of transcription factors that plays an important role in multiple developmental programs, including the cardiovascular system, seems to have a significant functional role in the vasculature. We, therefore, generated endothelial cell (EC)-specific MEF2C-deficient mice and explored the role of MEF2C in retinal vascularization during normal development and in a mouse model of oxygen-induced retinopathy. Ablation of MEF2C did not cause appreciable defects in normal retinal vascular development. However, MEF2C ablation in ECs suppressed vessel loss in oxygen-induced retinopathy and strongly promoted vascular regrowth, consequently reducing retinal avascularity. This finding was associated with suppression of pathologic retinal angiogenesis and blood-retinal barrier dysfunction. MEF2C knockdown in cultured retinal ECs using small-interfering RNAs rescued ECs from death and stimulated tube formation under stress conditions, confirming the endothelial-autonomous and antiangiogenic roles of MEF2C. HO-1 was induced by MEF2C knockdown in vitro and may play a role in the proangiogenic effect of MEF2C knockdown on retinal EC tube formation. Thus, MEF2C may play an antiangiogenic role in retinal ECs under stress conditions, and modulation of MEF2C may prevent pathologic retinal neovascularization.


Assuntos
Fatores de Regulação Miogênica/fisiologia , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/patologia , Retinopatia da Prematuridade/fisiopatologia , Animais , Apoptose/fisiologia , Barreira Hematorretiniana/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Técnicas de Silenciamento de Genes , Humanos , Recém-Nascido , Fatores de Transcrição MEF2 , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio , RNA Interferente Pequeno/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/metabolismo , Retinopatia da Prematuridade/patologia
18.
Blood ; 117(22): 5785-6, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21636713

RESUMO

In this issue of Blood, Joyal and colleagues make the insightful finding that Semaphorin3A (Sema3A) is secreted by hypoxic neurons in ischemic/avascular retina,thereby inhibiting vascular regeneration of the retina and enhancing pathologic preretinal neovascularization.

19.
Invest Ophthalmol Vis Sci ; 64(11): 23, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589983

RESUMO

Purpose: To assess age-related biometric changes of the eye in nonhuman primates (NHPs), to and decipher the growth and aging rates and their comparability with humans. Methods: Ocular anatomic measurements were performed on 341 macaca fascicularis aged 0.5 to 23 years via multimodal approaches including IOLMaster 700. Linear or polynomial regression models were simulated to determine the best fitted age-related function. The metrics were compared with human equivalents in published reports. Results: Macaques exhibited a postnatal eye growth pattern similar to humans, characterized by continuous eye extension coordinated with dramatic reshaping of the lens but not the cornea. The age-related growth of lens thickness (LT), anterior chamber depth (ACD), and axis length (AL) exhibited nonlinear and bipolar patterns. The inflection points were 10 to 12 years old for LT and ACD and 13 to 15 years old for AL in macaques, which were comparable in chronological age at a ratio of ∼1: ratio with that in humans. In contrast, the speed of aging, including the increase in lens density and the decrease in retinal nerve fiber layer thickness, was comparable in relative age at a ratio of ∼1:3 according to the differences in lifespan between macaques and humans. Lens density was a robust indicator for the aging process. Conclusions: Macaque eyes recapitulated the age-related process of human eyes to varying extents with different growth and aging rates. Chronological age or relative age should be considered in different scenarios when macaques are included in preclinical studies.


Assuntos
Envelhecimento , Cristalino , Animais , Humanos , Criança , Córnea , Retina , Macaca fascicularis
20.
Exp Eye Res ; 94(1): 41-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22123068

RESUMO

Retinal angiogenesis is a major cause of blindness in ischemic retinopathies including diabetic retinopathy and retinopathy of prematurity. Integrin αvß3 is a promising therapeutic target for ocular angiogenesis, modulating the pro-angiogenic actions of multiple growth factors. In this study, we sought to determine the effects of the integrin αvß3 antagonist tetra-iodothyroacetic acid (tetrac) on the angiogenic actions of VEGF and erythropoietin (EPO) in cultured human retinal endothelial cells. In addition, we investigated the effect of tetrac and a nanoparticulate formulation of tetrac on retinal angiogenesis in vivo, in the mouse oxygen-induced retinopathy (OIR) model. Tetrac inhibitory activity was evaluated in human retinal endothelial cells treated with VEGF and/or EPO. Endothelial cell proliferation, migration, and tube formation were assessed, in addition to phosphorylation of ERK1/2. For the studies of the oxygen-induced retinopathy model, C57BL/6 mice were exposed to 75% oxygen from postnatal day (P)7 to P12, and then returned to room air. Tetrac and tetrac-nanoparticle (tetrac-NP) were administered at P12 and P15 by either intraperitoneal or intravitreal injection. Retinal neovascularization was quantitated at P18. Tetrac significantly inhibited pro-angiogenic effects of VEGF and/or EPO on retinal endothelial cells, indicating that the angiogenic effects of both growth factors are dependent on integrin αvß3. Retinal neovascularization in the OIR model was significantly inhibited by both tetrac and tetrac-NP. These results indicate that the integrin αvß3 antagonist, tetrac, is an effective inhibitor of retinal angiogenesis. The ability of tetrac to inhibit the pro-angiogenic effect of both VEGF and EPO on retinal endothelial cells suggests that tetrac (and antagonism of integrin αvß3) is a viable therapeutic strategy for proliferative diabetic retinopathy.


Assuntos
Inibidores da Angiogênese/farmacologia , Integrina alfaVbeta3/antagonistas & inibidores , Neovascularização Retiniana/prevenção & controle , Tiroxina/análogos & derivados , Animais , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Eritropoetina/antagonistas & inibidores , Eritropoetina/farmacologia , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxigênio/toxicidade , Fosforilação , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Tiroxina/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA