Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 125: 103849, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965548

RESUMO

Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.


Assuntos
Cocaína , Masculino , Feminino , Ratos , Animais , Camundongos , Cocaína/farmacologia , Neurônios Espinhosos Médios , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Ratos Sprague-Dawley , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Núcleo Accumbens/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mamíferos
2.
Learn Mem ; 24(7): 278-288, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28620075

RESUMO

Using a hippocampus-dependent contextual threat learning and memory task, we report widespread, coordinated DNA methylation changes in CA1 hippocampus of Sprague-Dawley rats specific to threat learning at genes involved in synaptic transmission. Experience-dependent alternations in gene expression and DNA methylation were observed as early as 1 h following memory acquisition and became more pronounced after 24 h. Gene ontology analysis revealed significant enrichment of functional categories related to synaptic transmission in genes that were hypomethylated at 24 h following threat learning. Integration of these data sets with previously characterized epigenetic and transcriptional changes in brain disease states suggested significant overlap between genes regulated by memory formation and genes altered in memory-related neurological and neuropsychiatric diseases. These findings provide a comprehensive resource to aid in the identification of memory-relevant therapeutic targets. Our results shed new light on the gene expression and DNA methylation changes involved in memory formation, confirming that these processes are dynamic and experience-dependent. Finally, this work provides a roadmap for future studies to identify linkage of memory-associated genes to altered disease states.


Assuntos
Condicionamento Clássico/fisiologia , Epigenômica/métodos , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Animais , Ilhas de CpG/fisiologia , Metilação de DNA/fisiologia , Ontologia Genética , Masculino , Aprendizagem em Labirinto , Modelos Moleculares , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/genética , Fatores de Tempo
3.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711527

RESUMO

Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.

4.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31879366

RESUMO

Blue wavelength light is used as an optical actuator in numerous optogenetic technologies employed in neuronal systems. However, the potential side effects of blue light in neurons has not been thoroughly explored, and recent reports suggest that neuronal exposure to blue light can induce transcriptional alterations in vitro and in vivo Here, we examined the effects of blue wavelength light in cultured primary rat cortical cells. Exposure to blue light (470 nm) resulted in upregulation of several immediate early genes (IEGs) traditionally used as markers of neuronal activity, including Fos and Fosb, but did not alter the expression of circadian clock genes Bmal1, Cry1, Cry2, Clock, or Per2 IEG expression was increased following 4 h of 5% duty cycle light exposure, and IEG induction was not dependent on light pulse width. Elevated levels of blue light exposure induced a loss of cell viability in vitro, suggestive of overt phototoxicity. Induction of IEGs by blue light was maintained in cortical cultures treated with AraC to block glial proliferation, indicating that induction occurred selectively in postmitotic neurons. Importantly, changes in gene expression induced by blue wavelength light were prevented when cultures were maintained in a photoinert media supplemented with a photostable neuronal supplement instead of commonly utilized neuronal culture media and supplements. Together, these findings suggest that light-induced gene expression alterations observed in vitro stem from a phototoxic interaction between commonly used media and neurons, and offer a solution to prevent this toxicity when using photoactivatable technology in vitro.


Assuntos
Luz , Neurônios , Animais , Ritmo Circadiano , Meios de Cultura , Expressão Gênica , Optogenética , Ratos
5.
Front Genome Ed ; 2: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713218

RESUMO

The expression of genetic material governs brain development, differentiation, and function, and targeted manipulation of gene expression is required to understand contributions of gene function to health and disease states. Although recent improvements in CRISPR/dCas9 interference (CRISPRi) technology have enabled targeted transcriptional repression at selected genomic sites, integrating these techniques for use in non-dividing neuronal systems remains challenging. Previously, we optimized a dual lentivirus expression system to express CRISPR-based activation machinery in post-mitotic neurons. Here we used a similar strategy to adapt an improved dCas9-KRAB-MeCP2 repression system for robust transcriptional inhibition in neurons. We find that lentiviral delivery of a dCas9-KRAB-MeCP2 construct driven by the neuron-selective human synapsin promoter enabled transgene expression in primary rat neurons. Next, we demonstrate transcriptional repression using CRISPR sgRNAs targeting diverse gene promoters, and show superiority of this system in neurons compared to existing RNA interference methods for robust transcript specific manipulation at the complex Brain-derived neurotrophic factor (Bdnf) gene. Our findings advance this improved CRISPRi technology for use in neuronal systems for the first time, potentially enabling improved ability to manipulate gene expression states in the nervous system.

6.
Sci Adv ; 6(26): eaba4221, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637607

RESUMO

Drugs of abuse elevate dopamine levels in the nucleus accumbens (NAc) and alter transcriptional programs believed to promote long-lasting synaptic and behavioral adaptations. Here, we leveraged single-nucleus RNA-sequencing to generate a comprehensive molecular atlas of cell subtypes in the NAc, defining both sex-specific and cell type-specific responses to acute cocaine experience in a rat model system. Using this transcriptional map, we identified an immediate early gene expression program that is up-regulated following cocaine experience in vivo and dopamine receptor activation in vitro. Multiplexed induction of this gene program with a large-scale CRISPR-dCas9 activation strategy initiated a secondary synapse-centric transcriptional profile, altered striatal physiology in vitro, and enhanced cocaine sensitization in vivo. Together, these results define the transcriptional response to cocaine with cellular precision and demonstrate that drug-responsive gene programs can potentiate both physiological and behavioral adaptations to drugs of abuse.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Ratos , Transcriptoma
7.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863790

RESUMO

CRISPR-based technology has provided new avenues to interrogate gene function, but difficulties in transgene expression in post-mitotic neurons has delayed incorporation of these tools in the central nervous system (CNS). Here, we demonstrate a highly efficient, neuron-optimized dual lentiviral CRISPR-based transcriptional activation (CRISPRa) system capable of robust, modular, and tunable gene induction and multiplexed gene regulation across several primary rodent neuron culture systems. CRISPRa targeting unique promoters in the complex multi-transcript gene brain-derived neurotrophic factor (Bdnf) revealed both transcript- and genome-level selectivity of this approach, in addition to highlighting downstream transcriptional and physiological consequences of Bdnf regulation. Finally, we illustrate that CRISPRa is highly efficient in vivo, resulting in increased protein levels of a target gene in diverse brain structures. Taken together, these results demonstrate that CRISPRa is an efficient and selective method to study gene expression programs in brain health and disease.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Técnicas Genéticas , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Cultura Primária de Células , Distribuição Aleatória , Ratos Sprague-Dawley , Proteína Reelina , Serina Endopeptidases/metabolismo , Transcrição Gênica , Transcriptoma
8.
Mol Biol Cell ; 28(14): 1862-1870, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28539407

RESUMO

Longitudinal growth of bones occurs at the growth plates where chondrocytes align into columns that allow directional growth. Little is known about the mechanisms controlling the ability of chondrocytes to form columns. We hypothesize that mechanical load and the resulting force on chondrocytes are necessary during active growth for proper growth plate development and limb length. To test this hypothesis, we created a mouse model in which a portion of the sciatic nerve from one hind limb was transected at postnatal day 8 to cause paralysis to that limb. At 6 and 12 wk postsurgery, the hind limb had significantly less bone mineral density than contralateral controls, confirming reduced load. At 8 and 14 wk postsurgery, tibiae were significantly shorter than controls. The paralyzed growth plate showed disruptions to column organization, with fewer and shorter columns. Polarized light microscopy indicated alterations in collagen fiber organization in the growth plate. Furthermore, organization of the actin cytoskeleton in growth plate chondrocytes was disrupted. We conclude that mechanical load and force on chondrocytes within the growth plate regulate postnatal development of the long bones.


Assuntos
Citoesqueleto de Actina/fisiologia , Lâmina de Crescimento/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Desenvolvimento Ósseo/fisiologia , Osso e Ossos/fisiologia , Condrócitos/metabolismo , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Tíbia/crescimento & desenvolvimento , Tíbia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA