Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805997

RESUMO

Myelin basic protein (MBP) is intrinsically disordered in solution and is considered as a conformationally flexible biomacromolecule. Here, we present a study on perturbation of MBP structure and dynamics by the denaturant guanidinium chloride (GndCl) using small-angle scattering and neutron spin-echo spectroscopy (NSE). A concentration of 0.2 M GndCl causes charge screening in MBP resulting in a compact, but still disordered protein conformation, while GndCl concentrations above 1 M lead to structural expansion and swelling of MBP. NSE data of MBP were analyzed using the Zimm model with internal friction (ZIF) and normal mode (NM) analysis. A significant contribution of internal friction was found in compact states of MBP that approaches a non-vanishing internal friction relaxation time of approximately 40 ns at high GndCl concentrations. NM analysis demonstrates that the relaxation rates of internal modes of MBP remain unaffected by GndCl, while structural expansion due to GndCl results in increased amplitudes of internal motions. Within the model of the Brownian oscillator our observations can be rationalized by a loss of friction within the protein due to structural expansion. Our study highlights the intimate coupling of structural and dynamical plasticity of MBP, and its fundamental difference to the behavior of ideal polymers in solution.


Assuntos
Proteína Básica da Mielina , Proteínas , Guanidina , Proteína Básica da Mielina/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo
2.
Soft Matter ; 17(32): 7565-7584, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341807

RESUMO

The implementation of anisotropy to functional materials is a key step towards future smart materials. In this work, we evaluate the influence of preorientation and sample architecture on the strain-induced anisotropy in hybrid elastomers containing covalently attached elongated magnetic filler particles. Accordingly, silica coated spindle-type hematite nanoparticles are incorporated into poly(dimethylsiloxane)-based elastomers, and two types of composite architectures are compared: on the one hand a conventional architecture of filled, covalently crosslinked elastomers, and on the other hybrid elastomers that are crosslinked exclusively by covalent attachment of the polymer chains to the particle surface. By the application of external strain and with magnetic fields, the orientational order of the elongated nanoparticles can be manipulated, and we investigate the interplay between strain, magnetic order, and orientational order of the particles by combining 2D small angle X-ray scattering experiments under strain and fields with Mössbauer spectroscopy under similar conditions, and supplementary angular-dependent magnetization experiments. The converging information is used to quantify the order in these interesting materials, while establishing a direct link between the magnetic properties and the spatial orientation of the embedded magnetic nanoparticles.

3.
Angew Chem Int Ed Engl ; 60(32): 17539-17546, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156739

RESUMO

The defined assembly of nanoparticles in polymer matrices is an important precondition for next-generation functional materials. Here we demonstrate that a defined three-dimensional nanoparticle assembly within the unit cells can be realized by directly linking the nanoparticles to block copolymers. We show that for a range of nearly symmetric to unsymmetric block copolymers there are only two formed structures, a hexagonal lattice of P6/mmm-symmetry, where the nanoparticles are located in 1D-arrays within the cylindrical domains, and a cubic lattice of Im3m-symmetry, where the nanoparticles are located in the octahedral voids of a BCC-lattice, corresponding to the structure of ferrite steel. We observe the block length ratio and thus the interfacial curvature to be the most important parameter determining the lattice type. This is rationalized in terms of minimal chain extension such that domain topologies with large positive curvature are highly preferred. Already volume fractions of only one percent are sufficient to destabilize a lamellar structure and favor the formation of highly curved interfaces. The study thus demonstrates how nanoparticles can be located on well-defined positions in three-dimensional unit cells of block copolymer nanocomposites. This opens the way to functional 3D-nanocomposites where the nanoparticles need to be located on defined matrix positions.

4.
J Am Chem Soc ; 142(25): 10989-10995, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32476414

RESUMO

Polymer hexosomes are block copolymer solution morphologies that adopt an internal structure composed of an inverse hexagonal (HII) phase. To date, most polymer hexosomes are reportedly rotationally symmetric solid structures that possess a common feature where hexagonally ordered inverted cylinders rotate along a central axis of symmetry to form circular hoops. Here, we report on the formation of polymer hexosomes whose inverted cylinders orient in an unusual manner, forming hoops that are noncircular. For topological reasons, this led to the generation of four defects in the resulting hexosome structure. We find that these defect-bearing hexosomes are hollow, thereby resembling polymer vesicles or polymersomes with an inverse hexagonal cylindrical morphology in the shell. The topological defects of these so-called "vesicular hexosomes" are enticing as they could serve as a platform to spatially anchor targeting ligands or biomolecules on the surface, while the hollow cylindrical shell and the vesicular lumen could spatially accommodate cargoes within the different domains. We propose that these vesicular hexosomes do not form via a conventional nucleation-growth self-assembly pathway, but rather via a two-step process involving first liquid-liquid phase separation followed by polymer microphase separation.


Assuntos
Resinas Acrílicas/química , Lipossomos/química , Polivinil/química , Ouro/química , Lipossomos/síntese química , Lipossomos/ultraestrutura , Nanopartículas Metálicas/química
5.
Angew Chem Int Ed Engl ; 58(25): 8541-8545, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31081290

RESUMO

The defined assembly of nanoparticles (NPs) in polymer matrices is an important prerequisite for next-generation functional materials. A promising approach to control NP positions in polymer matrices at the nanometer scale is the use of block copolymers. It allows the selective deposition of NPs in nanodomains, but the final defined and ordered positioning of the NPs within the domains has not been possible. This can now be achieved by coating NPs with block copolymers. The self-assembly of block copolymer-coated NPs directly leads to ordered microdomains containing ordered NP arrays with exactly one NP per unit cell. By variation of the grafting density, the inter-nanoparticle distance can be controlled from direct NP surface contact to surface separations of several nanometers, determined by the thickness of the polymer shell. The method can be applied to a wide variety of block copolymers and NPs and is thus suitable for a broad range of applications.

6.
Soft Matter ; 13(10): 1998-2003, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28197579

RESUMO

We study the diffusion of an enhanced green fluorescent protein (GFP+) in bicontinuous sugar-surfactant based microemulsions. The size of the water domains in such systems is controlled by changes of the oil-to-water ratio. Hence, microemulsions allow to produce confinement effects in a controlled way. At high water content the protein is found to exhibit Fickian diffusion. Decreasing the water domain size leads to a slowing down of the protein diffusion and sub-diffusive behavior is obtained on the scale observed by fluorescence correlation spectroscopy. Further decrease of the water domain size finally nearly fixes the GFP+ in these domains and forces it to increasingly follow the breathing mode of the microemulsion matrix.

7.
Angew Chem Int Ed Engl ; 56(1): 405-408, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27921346

RESUMO

Heterogeneous catalysis with supported nanoparticles (NPs) is a highly active field of research. However, the efficient stabilization of NPs without deteriorating their catalytic activity is challenging. By combining top-down (coaxial electrospinning) and bottom-up (crystallization-driven self-assembly) approaches, we prepared patchy nonwovens with functional, nanometer-sized patches on the surface. These patches can selectively bind and efficiently stabilize gold nanoparticles (AuNPs). The use of these AuNP-loaded patchy nonwovens in the alcoholysis of dimethylphenylsilane led to full conversion under comparably mild conditions and in short reaction times. The absence of gold leaching or a slowing down of the reaction even after ten subsequent cycles manifests the excellent reusability of this catalyst system. The flexibility of the presented approach allows for easy transfer to other nonwoven supports and catalytically active NPs, which promises broad applicability.

8.
Soft Matter ; 12(36): 7644-54, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27535210

RESUMO

Colloidal quasicrystals have received increased interest recently due to new insight in exploring their potential for photonic materials as well as for optical devices [Vardeny et al., Nat. Photonics, 2013, 7, 177]. Colloidal quasicrystals in aqueous solutions have been found in systems of micelles with impenetrable cores [Fischer et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 1810]. A simple model potential for micelle-micelle interaction is the step potential, which is infinite for core overlaps and constant for shell overlaps. Dotera et al. performed Monte Carlo simulations of the step potential model and found quasicrystals for specific values of the packing fraction η and the shell-core ratio λ [Dotera et al., Nature, 2014, 506, 208 ]. However, the overlap of real micelles causes repulsive forces, which increase with decreasing core distance. We consider this by introducing a novel model potential with repulsive forces depending on a third parameter α. In a systematic manner we study this more realistic potential with two-dimensional molecular dynamics simulations. For α = 0 the model is similar to the step potential model. For the first time, we provide a comprehensive overview of crystalline, quasicrystalline, and disordered structures as a function of η and λ. Simulations performed with α > 0 show the impact of the repulsive forces. We find that quasicrystalline structures at high densities vanish while new quasicrystalline structures appear at intermediate densities. Our results help to tailor colloidal systems for today's advanced applications in photonics and optical devices.

9.
Langmuir ; 31(42): 11678-91, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26393805

RESUMO

Despite the increasing interest in the applications of functional nanoparticles, a comprehensive understanding of the formation mechanism starting from the precursor reaction with subsequent nucleation and growth is still a challenge. We for the first time investigated the kinetics of gold nanoparticle formation systematically by means of a lab-based in situ small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/UV-vis absorption spectroscopy experiment using a stopped-flow apparatus. We thus could systematically investigate the influence of all major factors such as precursor concentration, temperature, the presence of stabilizing ligands and cosolvents on the temporal evolution of particle size, size distribution, and optical properties from the early prenucleation state to the late growth phase. We for first time formulated and numerically solved a closed nucleation and growth model including the precursor reaction. We observe that the results can be well described within the framework of classical nucleation and growth theory, including also results of previous studies by other research groups. From the analysis, we can quantitatively derive values for the rate constants of precursor reaction and growth together with their activation free enthalpies. We find the growth process to be surface-reaction limited with negligible influence of Ostwald ripening yielding narrow disperse gold nanoparticles.

10.
Macromol Rapid Commun ; 36(13): 1267-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25882373

RESUMO

Currently available methods for synthesis of polymeric nanocapsules only offer limited control over the shell thickness, even though it is an important parameter for various applications. Furthermore, suitable methods to critically measure this parameter in a facile way are still nonexistent. Here, lab-scale small-angle X-ray scattering (SAXS) is utilized to in situ measure the evolution of shell thickness during nanocapsule synthesis via inverse miniemulsion periphery reversible addition-fragmentation chain transfer (RAFT) polymerization (IMEPP). The measured shell thickness is consistent with estimates from the commonly used transmission electron microscopy (TEM) technique. Moreover, the individual thicknesses of two concentric shells comprising different polymeric materials (the outer shell formed via IMEPP chain extension of the inner shell) can be determined, thus further demonstrating the versatility of this approach.


Assuntos
Metacrilatos/química , Metilmetacrilato/química , Nanocápsulas/ultraestrutura , Reagentes de Ligações Cruzadas/química , Emulsões , Microscopia Eletrônica de Transmissão , Nanocápsulas/química , Tamanho da Partícula , Polimerização , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Phys Chem Chem Phys ; 17(2): 1354-67, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25425290

RESUMO

Coating metal nanocrystals with responsive polymers provides a model case of smart, functional materials, where the optical properties can be modulated by external stimuli. However the optical response is highly sensitive to the polymer shell morphology, thickness and dielectric contrast. In this paper we study the nature of cross-linked, thermoresponsive polymer shells for the first time using four different scattering approaches to elucidate the density profile of the shells. Each scattering method provides unique information about the temperature-induced changes of shell thickness in terms of hydrodynamic radius and radius of gyration, the pair-distance distribution functions of the shells as well as the dynamic network fluctuations. Only a combination of these different scattering techniques allows to develop a morphological model of the core-shell particles. We further demonstrate control of the cross-linker distribution in core-shell synthesis by semi-batch precipitation copolymerization. Conducting the polymerization in three steps, we show for the first time that the polymer shell thickness can be successively increased without affecting the shell morphology and response behavior.


Assuntos
Resinas Acrílicas/química , Ouro/química , Espalhamento a Baixo Ângulo , Coloides , Hidrodinâmica
12.
Langmuir ; 30(42): 12494-502, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25216394

RESUMO

Fast concentration-induced diffusion-limited lyotropic phase transitions can be studied in situ with millisecond time resolution using continuous flow microfluidics in combination with microfocus small-angle X-ray scattering. The method was applied to follow a classical self-assembly sequence where amphiphiles assemble into micelles, which subsequently assemble into an ordered lattice via a disorder/order transition. As a model system we selected the self-assembly of an amphiphilic block copolymer induced by the addition of a nonsolvent. Using microchannel hydrodynamic flow-focusing, large concentration gradients can be generated, leading to a deep quench from the miscible to the microphase-separated state. Within milliseconds the block copolymers assembly via a spinodal microphase separation into micelles, followed by a disorder/order transition into an FCC liquid-crystalline phase with late-stage domain growth and shear-induced domain orientation into a mesocrystal. A comparison with a slow macroscopic near-equilibrium kinetic experiment shows that the fast structural transitions follow a direct pathway to the equilibrium structure without the trapping of metastable states.

13.
J Colloid Interface Sci ; 665: 801-813, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555748

RESUMO

The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.


Assuntos
Insulina , Protoporfirinas , Polieletrólitos , Óxido de Etileno , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros/química , Proteínas , Ponto Isoelétrico
14.
Protein Sci ; 33(5): e4989, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659213

RESUMO

Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrinsicamente Desordenadas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Congelamento , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína
15.
J Colloid Interface Sci ; 634: 243-254, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535162

RESUMO

Raspberry-like poly(oligoethylene methacrylate-b-N-vinylcaprolactam)/polystyrene (POEGMA-b-PVCL/PS) patchy particles (PPs) and complex colloidal particle clusters (CCPCs) were fabricated in two-, and one-step (cascade) flow process. Surfactant-free, photo-initiated reversible addition-fragmentation transfer (RAFT) precipitation polymerization (Photo-RPP) was used to develop internally cross-linked POEGMA-b-PVCL microgels with narrow size distribution. Resulting microgel particles were then used to stabilize styrene seed droplets in water, producing raspberry-like PPs. In the cascade process, different hydrophobicity between microgel and PS induced the self-assembly of the first formed raspberry particles that then polymerized continuously in a Pickering emulsion to form the CCPCs. The internal structure as well as the surface morphology of PPs and CCPCs were studied as a function of polymerization conditions such as flow rate/retention time (Rt), temperature and the amount of used cross-linker. By performing Photo-RPP in tubular flow reactor we were able to gained advantages over heat dissipation and homogeneous light distribution in relation to thermally-, and photo-initiated bulk polymerizations. Tubular reactor also enabled detailed studies over morphological evolution of formed particles as a function of flow rate/Rt.


Assuntos
Microgéis , Coloides/química , Polietilenoglicóis , Polímeros/química
16.
Nanoscale ; 15(40): 16413-16424, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37791518

RESUMO

An isotopic effect of normal (H2O) vs. heavy water (D2O) is well known to fundamentally affect the structure and chemical properties of proteins, for instance. Here, we correlate the results from small angle X-ray and neutron scattering (SAXS, SANS) with high-resolution scanning transmission electron microscopy to track the evolution of CdS nanoparticle size and crystallinity from aqueous solution in the presence of the organic ligand ethylenediaminetetraacetate (EDTA) at room temperature in both H2O and D2O. We provide evidence via SANS experiments that exchanging H2O with D2O impacts nanoparticle formation by changing the equilibria and dynamics of EDTA clusters in solution as investigated by nuclear magnetic resonance analysis. The colloidal stability of the CdS nanoparticles, covered by a layer of [Cd(EDTA)]2- complexes, is significantly reduced in D2O despite the strong stabilizing effect of EDTA in suspensions of normal water. Hence, conclusions about nanoparticle formation mechanisms from D2O solutions reveal limited transferability to reactions in normal water due to isotopic effects, which thus need to be discussed for contrast match experiments.

17.
Polymers (Basel) ; 15(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37177276

RESUMO

Poly(ethylene oxide) block copolymers (PEOz BCP) have been demonstrated to exhibit remarkably high lithium ion (Li+) conductivity for Li+ batteries applications. For linear poly(isoprene)-b-poly(styrene)-b-poly(ethylene oxide) triblock copolymers (PIxPSyPEOz), a pronounced maximum ion conductivity was reported for short PEOz molecular weights around 2 kg mol-1. To later enable a systematic exploration of the influence of the PIx and PSy block lengths and related morphologies on the ion conductivity, a synthetic method is needed where the short PEOz block length can be kept constant, while the PIx and PSy block lengths could be systematically and independently varied. Here, we introduce a glycidyl ether route that allows covalent attachment of pre-synthesized glycidyl-end functionalized PEOz chains to terminate PIxPSy BCPs. The attachment proceeds to full conversion in a simplified and reproducible one-pot polymerization such that PIxPSyPEOz with narrow chain length distribution and a fixed PEOz block length of z = 1.9 kg mol-1 and a D = 1.03 are obtained. The successful quantitative end group modification of the PEOz block was verified by nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). We demonstrate further that with a controlled casting process, ordered microphases with macroscopic long-range directional order can be fabricated, as demonstrated by small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has already been shown in a patent, published by us, that BCPs from the synthesis method presented here exhibit comparable or even higher ionic conductivities than those previously published. Therefore, this PEOz BCP system is ideally suitable to relate BCP morphology, order and orientation to macroscopic Li+ conductivity in Li+ batteries.

18.
Langmuir ; 28(2): 1136-41, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22149209

RESUMO

Internally self-assembled submicrometer emulsions were stabilized by F127, by the charged diblock copolymer K151, by L300 particles, and by sodium dodecyl sulfate (SDS). The stabilization of all investigated internal phases and the impact of the stabilizer on them are discussed. The use of charged stabilizers results in a highly negative zeta potential of the emulsion droplets, which can be exploited as a means to control their adsorption onto charged surfaces. Small-angle X-ray scattering and dynamic light scattering were used to determine the internal structure and size of the emulsion droplets, respectively.


Assuntos
Micelas , Polímeros/química , Dióxido de Silício/química , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
ACS Nano ; 16(2): 2608-2620, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35104108

RESUMO

The drying behavior of regenerated cellulose gel beads swollen with different nonsolvents (e.g., water, ethanol, water/ethanol mixtures) is studied in situ on the macroscopic scale with an optical microscope as well as on nanoscale using small-angle/wide-angle X-ray scattering (SAXS/WAXS) techniques. Depending on the cellulose concentration, the structural evolution of beads during drying follows one of three distinct regimes. First, when the cellulose concentration is lower than 0.5 wt %, the drying process comprises three steps and, regardless of the water/ethanol mixture composition, a sharp structural transition corresponding to the formation of a cellulose II crystalline structure is observed. Second, when the cellulose concentration is higher than 5.0 wt %, a two-step drying process is observed and no structural transition occurs for any of the beads studied. Third, when the cellulose concentration is between 0.5 and 5.0 wt %, the drying process is dependent on the nonsolvent composition. A three-step drying process takes place for beads swollen with water/ethanol mixtures with a water content higher than 20%, while a two-step drying process is observed when the water content is lower than 20%. To describe the drying behavior governed by the cellulose concentration and nonsolvent composition, a simplified phase diagram is proposed.


Assuntos
Celulose , Água , Celulose/química , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
20.
J Appl Crystallogr ; 55(Pt 6): 1592-1602, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36570657

RESUMO

Small-angle scattering (SAS) experiments are a powerful method for studying self-assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out-of-the-box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two-dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two-dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long-range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite-length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA