Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microbiology (Reading) ; 160(Pt 8): 1599-1608, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24841705

RESUMO

Micro-organisms sense the availability of nutrients in their environment to control cellular behaviour and the expression of transporters and enzymes that are required for the utilization of these nutrients. In the pathogenic yeast Candida albicans, the preferred nitrogen source ammonium suppresses the switch from yeast to filamentous growth in response to certain stimuli, and it also represses the secretion of proteases, which are required for the utilization of proteins as an alternative nitrogen source. To investigate whether C. albicans senses the availability of ammonium in the extracellular environment or if ammonium uptake into the cell is required to regulate morphogenesis and gene expression, we compared the behaviour of wild-type cells and ammonium uptake-deficient mutants in the presence and absence of extracellular ammonium. Arginine-induced filamentous growth was suppressed by ammonium in the wild-type, but not in mutants lacking the ammonium permeases Mep1 and Mep2. Similarly, ammonium suppressed protease secretion and extracellular protein degradation in the wild-type, but not in mutants lacking the ammonium transporters. By comparing the gene expression profiles of C. albicans grown in the presence of low or high ammonium concentrations, we identified a set of genes whose expression is controlled by nitrogen availability. The repression of genes involved in the utilization of alternative nitrogen sources, which occurred under ammonium-replete conditions in the wild-type, was abrogated in mep1Δ mep2Δ mutants. These results demonstrate that C. albicans does not respond to the presence of sufficient amounts of the preferred nitrogen source ammonium by sensing its availability in the environment. Instead, ammonium has to be taken up into the cell to control morphogenesis, protease secretion and gene expression.


Assuntos
Compostos de Amônio/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeo Hidrolases/metabolismo , Arginina/metabolismo , Candida albicans/enzimologia , Candida albicans/genética , Proteínas Fúngicas/genética , Peptídeo Hidrolases/genética , Transporte Proteico
2.
Eukaryot Cell ; 12(4): 520-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376942

RESUMO

Fungi possess two distinct proton-coupled peptide transport systems, the dipeptide/tripeptide transporters (PTR) and the oligopeptide transporters (OPT), which enable them to utilize peptides as nutrients. In the pathogenic yeast Candida albicans, peptide transporters are encoded by gene families consisting of two PTR genes and eight OPT genes. To gain insight into the functions and importance of specific peptide transporters, we generated mutants lacking the two dipeptide/tripeptide transporters Ptr2 and Ptr22, as well as the five major oligopeptide transporters Opt1 to Opt5. These mutants were unable to grow in media containing peptides as the sole nitrogen source. Forced expression of individual peptide transporters in the septuple mutants showed that Ptr2 and Ptr22 could utilize all tested dipeptides as substrates but differed in their abilities to transport specific tripeptides. Interestingly, several oligopeptide transporters, which are thought to transport peptides consisting of more than three amino acids, also mediated the uptake of tripeptides. Opt1 especially turned out to be a highly flexible transporter that enabled growth on all tripeptides tested and could even utilize a dipeptide, a function that has never been ascribed to this family of peptide transporters. Despite their inability to grow on proteins or peptides, the opt1Δ opt2Δ opt3Δ opt4Δ opt5Δ ptr2Δ ptr22Δ septuple mutants had no in vivo fitness defect in a mouse model of gastrointestinal colonization. Therefore, the nutritional versatility of C. albicans enables it to utilize alternative nitrogen sources in this host niche, which probably contributes to its success as a commensal and pathogen in mammalian hosts.


Assuntos
Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Monossacarídeos/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Candidíase/microbiologia , Dipeptídeos/metabolismo , Feminino , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Transporte Proteico , Especificidade por Substrato
3.
Mol Microbiol ; 86(3): 539-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22924823

RESUMO

The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1, Tac1 and Upc2, which result in constitutive overexpression of multidrug efflux pumps and ergosterol biosynthesis genes respectively. It is not known how the permanently changed gene expression program in resistant strains affects their fitness in the absence of drug selection pressure. We have systematically investigated the effects of activating mutations in Mrr1, Tac1 and Upc2, individually and in all possible combinations, on the degree of fluconazole resistance and on the fitness of C. albicans in an isogenic strain background. All combinations of different resistance mechanisms resulted in a stepwise increase in drug resistance, culminating in 500-fold increased fluconazole resistance in strains possessing mutations in the three transcription factors and an additional resistance mutation in the drug target enzyme Erg11. The acquisition of resistance mutations was associated with reduced fitness under non-selective conditions in vitro as well as in vivo during colonization of a mammalian host. Therefore, without compensatory mutations, the inability to appropriately regulate gene expression results in a loss of competitive fitness of drug-resistant C. albicans strains.


Assuntos
Antifúngicos/farmacologia , Candida albicans/genética , Farmacorresistência Fúngica , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Mutação , Fatores de Transcrição/genética , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Candidíase/microbiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Transcrição/metabolismo
4.
Eukaryot Cell ; 10(1): 54-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097666

RESUMO

The diploid genome of the pathogenic yeast Candida albicans exhibits a high degree of heterozygosity. Genomic alterations that result in a loss of heterozygosity at specific loci may affect phenotypes and confer a selective advantage under certain conditions. Such genomic rearrangements can also occur during the construction of C. albicans mutants and remain undetected. The SAP2 gene on chromosome R encodes a secreted aspartic protease that is induced and required for growth of C. albicans when proteins are the only available nitrogen source. In strain SC5314, the two SAP2 alleles are functionally divergent because of differences in their regulation. Basal expression of the SAP2-2 allele, but not the SAP2-1 allele, provides the proteolytic degradation products that serve as inducers for full SAP2 induction. A triple mutant lacking the SAP4, SAP5, and SAP6 genes, which are located on chromosome 6, has previously been reported to have a growth defect on proteins, suggesting that one of the encoded proteases is required for SAP2 expression. Here we show that this sap4Δ sap5Δ sap6Δ mutant has become homozygous for chromosome R and lost the SAP2-2 allele. Replacement of one of the SAP2-1 copies in this strain by SAP2-2 and its regulatory region restored the ability of the sap4Δ sap5Δ sap6Δ mutant to utilize proteins as the sole nitrogen source. This is an illustrative example of how loss of heterozygosity at a different genomic locus can cause the mutant phenotype attributed to targeted deletion of a specific gene in C. albicans.


Assuntos
Ácido Aspártico Endopeptidases/genética , Candida albicans/genética , Perda de Heterozigosidade , Candida albicans/crescimento & desenvolvimento , Cromossomos Fúngicos/genética , Deleção de Genes , Genes Fúngicos , Loci Gênicos , Nitrogênio/metabolismo , Fenótipo
5.
Eukaryot Cell ; 10(3): 332-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278231

RESUMO

The ammonium permease Mep2 induces a switch from unicellular yeast to filamentous growth in response to nitrogen limitation in Saccharomyces cerevisiae and Candida albicans. In S. cerevisiae, the function of Mep2 and other ammonium permeases depends on the protein kinase Npr1. Mutants lacking NPR1 cannot grow on low concentrations of ammonium and do not filament under limiting nitrogen conditions. A G349C mutation in Mep2 renders the protein independent of Npr1 and results in increased ammonium transport and hyperfilamentous growth, suggesting that the signaling activity of Mep2 directly correlates with its ammonium transport activity. In this study, we investigated the role of Npr1 in ammonium transport and Mep2-mediated filamentation in C. albicans. We found that the two ammonium permeases Mep1 and Mep2 of C. albicans differ in their dependency on Npr1. While Mep1 could function well in the absence of the Npr1 kinase, ammonium transport by Mep2 was virtually abolished in npr1Δ mutants. However, the dependence of Mep2 activity on Npr1 was relieved at higher temperatures (37°C), and Mep2 could efficiently induce filamentous growth under limiting nitrogen conditions in npr1Δ mutants. Like in S. cerevisiae, mutation of the conserved glycine at position 343 in Mep2 of C. albicans to cysteine resulted in Npr1-independent ammonium uptake. In striking contrast, however, the mutation abolished the ability of Mep2 to induce filamentous growth both in the wild type and in npr1Δ mutants. Therefore, a mutation that improves ammonium transport by Mep2 under nonpermissible conditions eliminates its signaling activity in C. albicans.


Assuntos
Candida albicans/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Compostos de Amônio Quaternário/metabolismo , Transdução de Sinais , Transporte Biológico , Candida albicans/enzimologia , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/genética
6.
Antimicrob Agents Chemother ; 55(5): 2212-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21402859

RESUMO

Constitutive overexpression of the Mdr1 efflux pump is an important mechanism of acquired drug resistance in the yeast Candida albicans. The zinc cluster transcription factor Mrr1 is a central regulator of MDR1 expression, but other transcription factors have also been implicated in MDR1 regulation. To better understand how MDR1-mediated drug resistance is achieved in this fungal pathogen, we studied the interdependence of Mrr1 and two other MDR1 regulators, Upc2 and Cap1, in the control of MDR1 expression. A mutated, constitutively active Mrr1 could upregulate MDR1 and confer drug resistance in the absence of Upc2 or Cap1. On the other hand, Upc2 containing a gain-of-function mutation only slightly activated the MDR1 promoter, and this activation depended on the presence of a functional MRR1 gene. In contrast, a C-terminally truncated, activated form of Cap1 could upregulate MDR1 in a partially Mrr1-independent fashion. The induction of MDR1 expression by toxic chemicals occurred independently of Upc2 but required the presence of Mrr1 and also partially depended on Cap1. Transcriptional profiling and in vivo DNA binding studies showed that a constitutively active Mrr1 binds to and upregulates most of its direct target genes in the presence or absence of Cap1. Therefore, Mrr1 and Cap1 cooperate in the environmental induction of MDR1 expression in wild-type C. albicans, but gain-of-function mutations in either of the two transcription factors can independently mediate efflux pump overexpression and drug resistance.


Assuntos
Candida albicans/metabolismo , Fatores de Transcrição/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Southern Blotting , Western Blotting , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cerulenina/farmacologia , Imunoprecipitação da Cromatina , Farmacorresistência Fúngica , Citometria de Fluxo , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Fatores de Transcrição/genética
7.
Mol Microbiol ; 69(4): 827-40, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18577180

RESUMO

Overexpression of the MDR1 gene, encoding a multi-drug efflux pump of the major facilitator superfamily, is a major cause of resistance to the widely used antifungal agent fluconazole and other toxic substances in the fungal pathogen Candida albicans. We found that all tested clinical and in vitro generated C. albicans strains that had become fluconazole-resistant by constitutive MDR1 upregulation contained mutations in the MRR1 gene, which encodes a transcription factor that controls MDR1 expression. Introduction of the mutated alleles into a drug-susceptible C. albicans strain resulted in activation of the MDR1 promoter and multi-drug resistance, confirming that the amino acid substitutions in Mrr1p were gain-of-function mutations that rendered the transcription factor constitutively active. The majority of the MDR1 overexpressing strains had become homozygous for the mutated MRR1 alleles, demonstrating that the increased resistance level conferred by two gain-of-function alleles provides sufficient advantage to select for the loss of heterozygosity in the presence of fluconazole both in vitro and within the human host during therapy. Loss of heterozygosity usually occurred by mitotic recombination between the two chromosome 3 homologues on which MRR1 is located, but evidence for complete loss of one chromosome and duplication of the chromosome containing the mutated MRR1 allele was also obtained in two in vitro generated fluconazole-resistant strains. These results demonstrate that gain-of-function mutations in MRR1 are the major, if not the sole, mechanism of MDR1 overexpression in fluconazole-resistant strains and that this transcription factor plays a central role in the development of drug resistance in C. albicans.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Candida albicans/genética , Farmacorresistência Fúngica Múltipla/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/genética , Ativação Transcricional , Alelos , Antifúngicos/farmacologia , Sequência de Bases , Candida albicans/efeitos dos fármacos , Candida albicans/isolamento & purificação , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Genes Reguladores , Perda de Heterozigosidade , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Recombinação Genética , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
Eukaryot Cell ; 7(7): 1180-90, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18487346

RESUMO

In the pathogenic yeast Candida albicans, the zinc cluster transcription factor Upc2p has been shown to regulate the expression of ERG11 and other genes involved in ergosterol biosynthesis upon exposure to azole antifungals. ERG11 encodes lanosterol demethylase, the target enzyme of this antifungal class. Overexpression of UPC2 reduces azole susceptibility, whereas its disruption results in hypersusceptibility to azoles and reduced accumulation of exogenous sterols. Overexpression of ERG11 leads to the increased production of lanosterol demethylase, which contributes to azole resistance in clinical isolates of C. albicans, but the mechanism for this has yet to be determined. Using genome-wide gene expression profiling, we found UPC2 and other genes involved in ergosterol biosynthesis to be coordinately upregulated with ERG11 in a fluconazole-resistant clinical isolate compared with a matched susceptible isolate from the same patient. Sequence analysis of the UPC2 alleles of these isolates revealed that the resistant isolate contained a single-nucleotide substitution in one UPC2 allele that resulted in a G648D exchange in the encoded protein. Introduction of the mutated allele into a drug-susceptible strain resulted in constitutive upregulation of ERG11 and increased resistance to fluconazole. By comparing the gene expression profiles of the fluconazole-resistant isolate and of strains carrying wild-type and mutated UPC2 alleles, we identified target genes that are controlled by Upc2p. Here we show for the first time that a gain-of-function mutation in UPC2 leads to the increased expression of ERG11 and imparts resistance to fluconazole in clinical isolates of C. albicans.


Assuntos
Candida albicans/genética , Candidíase/microbiologia , Farmacorresistência Fúngica , Ergosterol/biossíntese , Fluconazol/farmacologia , Mutação , Fatores de Transcrição/metabolismo , Regulação para Cima , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/isolamento & purificação , Candida albicans/metabolismo , Códon sem Sentido , Ergosterol/antagonistas & inibidores , Ergosterol/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA