Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
New Phytol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953386

RESUMO

C4 photosynthesis is a complex trait requiring multiple developmental and metabolic alterations. Despite this complexity, it has independently evolved over 60 times. However, our understanding of the transition to C4 is complicated by the fact that variation in photosynthetic type is usually segregated between species that diverged a long time ago. Here, we perform a genome-wide association study (GWAS) using the grass Alloteropsis semialata, the only known species to have C3, intermediate, and C4 accessions that recently diverged. We aimed to identify genomic regions associated with the strength of the C4 cycle (measured using δ13C), and the development of C4 leaf anatomy. Genomic regions correlated with δ13C include regulators of C4 decarboxylation enzymes (RIPK), nonphotochemical quenching (SOQ1), and the development of Kranz anatomy (SCARECROW-LIKE). Regions associated with the development of C4 leaf anatomy in the intermediate individuals contain additional leaf anatomy regulators, including those responsible for vein patterning (GSL8) and meristem determinacy (GIF1). The parallel recruitment of paralogous leaf anatomy regulators between A. semialata and other C4 lineages implies the co-option of these genes is context-dependent, which likely has implications for the engineering of the C4 trait into C3 species.

2.
New Phytol ; 242(2): 774-785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389217

RESUMO

C4 photosynthesis is a key innovation in land plant evolution, but its immediate effects on population demography are unclear. We explore the early impact of the C4 trait on the trajectories of C4 and non-C4 populations of the grass Alloteropsis semialata. We combine niche models projected into paleoclimate layers for the last 5 million years with demographic models based on genomic data. The initial split between C4 and non-C4 populations was followed by a larger expansion of the ancestral C4 population, and further diversification led to the unparalleled expansion of descendant C4 populations. Overall, C4 populations spread over three continents and achieved the highest population growth, in agreement with a broader climatic niche that rendered a large potential range over time. The C4 populations that remained in the region of origin, however, experienced lower population growth, rather consistent with local geographic constraints. Moreover, the posterior transfer of some C4-related characters to non-C4 counterparts might have facilitated the recent expansion of non-C4 populations in the region of origin. Altogether, our findings support that C4 photosynthesis provided an immediate demographic advantage to A. semialata populations, but its effect might be masked by geographic contingencies.


Assuntos
Fotossíntese , Poaceae , Poaceae/genética , Fenótipo , Demografia
3.
Am J Bot ; 111(2): e16280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38334273

RESUMO

PREMISE: Cultivation and naturalization of plants beyond their natural range can bring previously geographically isolated taxa together, increasing the opportunity for hybridization, the outcomes of which are not predictable. Here, we explored the phenotypic and genomic effects of interspecific gene flow following the widespread cultivation of Mentha spicata (spearmint), M. longifolia, and M. suaveolens. METHODS: We morphologically evaluated 155 herbarium specimens of three Mentha species and sequenced the genomes of a subset of 93 specimens. We analyzed the whole genomes in a population and the phylogenetic framework and associated genomic classifications in conjunction with the morphological assessments. RESULTS: The allopolyploid M. spicata, which likely evolved in cultivation, had altered trichome characters, that is possibly a product of human selection for a more palatable plant or a byproduct of selection for essential oils. There were signs of genetic admixture between mints, including allopolyploids, indicating that the reproductive barriers between Mentha species with differences in ploidy are likely incomplete. Still, despite gene flow between species, we found that genetic variants associated with the cultivated trichome morphology continue to segregate. CONCLUSIONS: Although hybridization, allopolyploidization, and human selection during cultivation can increase species richness (e.g., by forming hybrid taxa), we showed that unless reproductive barriers are strong, these processes can also result in mixing of genes between species and the potential loss of natural biodiversity.


Assuntos
Mentha , Óleos Voláteis , Humanos , Mentha/genética , Fluxo Gênico , Filogenia , Óleos Voláteis/farmacologia , Hibridização Genética
4.
New Phytol ; 240(5): 2072-2084, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793435

RESUMO

Lateral gene transfer (LGT) is the movement of DNA between organisms without sexual reproduction. The acquired genes represent genetic novelties that have independently evolved in the donor's genome. Phylogenetic methods have shown that LGT is widespread across the entire grass family, although we know little about the underlying dynamics. We identify laterally acquired genes in five de novo reference genomes from the same grass genus (four Alloteropsis semialata and one Alloteropsis angusta). Using additional resequencing data for a further 40 Alloteropsis individuals, we place the acquisition of each gene onto a phylogeny using stochastic character mapping, and then infer rates of gains and losses. We detect 168 laterally acquired genes in the five reference genomes (32-100 per genome). Exponential decay models indicate that the rate of LGT acquisitions (6-28 per Ma) and subsequent losses (11-24% per Ma) varied significantly among lineages. Laterally acquired genes were lost at a higher rate than vertically inherited loci (0.02-0.8% per Ma). This high turnover creates intraspecific gene content variation, with a preponderance of them occurring as accessory genes in the Alloteropsis pangenome. This rapid turnover generates standing variation that can ultimately fuel local adaptation.


Assuntos
Transferência Genética Horizontal , Poaceae , Humanos , Filogenia , Poaceae/genética , Genoma , Evolução Molecular
5.
Plant Cell Environ ; 46(8): 2310-2322, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37184423

RESUMO

C4 photosynthesis results from anatomical and biochemical characteristics that together concentrate CO2 around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), increasing productivity in warm conditions. This complex trait evolved through the gradual accumulation of components, and particular species possess only some of these, resulting in weak C4 activity. The consequences of adding C4 components have been modelled and investigated through comparative approaches, but the intraspecific dynamics responsible for strengthening the C4 pathway remain largely unexplored. Here, we evaluate the link between anatomical variation and C4 activity, focusing on populations of the photosynthetically diverse grass Alloteropsis semialata that fix various proportions of carbon via the C4 cycle. The carbon isotope ratios in these populations range from values typical of C3 to those typical of C4 plants. This variation is statistically explained by a combination of leaf anatomical traits linked to the preponderance of bundle sheath tissue. We hypothesize that increased investment in bundle sheath boosts the strength of the intercellular C4 pump and shifts the balance of carbon acquisition towards the C4 cycle. Carbon isotope ratios indicating a stronger C4 pathway are associated with warmer, drier environments, suggesting that incremental anatomical alterations can lead to the emergence of C4 physiology during local adaptation within metapopulations.


Assuntos
Plantas , Poaceae , Poaceae/metabolismo , Plantas/metabolismo , Fotossíntese/fisiologia , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo
6.
Ann Bot ; 132(3): 365-382, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37422712

RESUMO

BACKGROUND: Numerous groups of plants have adapted to CO2 limitations by independently evolving C4 photosynthesis. This trait relies on concerted changes in anatomy and biochemistry to concentrate CO2 within the leaf and thereby boost productivity in tropical conditions. The ecological and economic importance of C4 photosynthesis has motivated intense research, often relying on comparisons between distantly related C4 and non-C4 plants. The photosynthetic type is fixed in most species, with the notable exception of the grass Alloteropsis semialata. This species includes populations exhibiting the ancestral C3 state in southern Africa, intermediate populations in the Zambezian region and C4 populations spread around the palaeotropics. SCOPE: We compile here the knowledge on the distribution and evolutionary history of the Alloteropsis genus as a whole and discuss how this has furthered our understanding of C4 evolution. We then present a chromosome-level reference genome for a C3 individual and compare the genomic architecture with that of a C4 accession of A. semialata. CONCLUSIONS: Alloteropsis semialata is one of the best systems in which to investigate the evolution of C4 photosynthesis because the genetic and phenotypic variation provides a fertile ground for comparative and population-level studies. Preliminary comparative genomic investigations show that the C3 and C4 genomes are highly syntenic and have undergone a modest amount of gene duplication and translocation since the different photosynthetic groups diverged. The background knowledge and publicly available genomic resources make A. semialata a great model for further comparative analyses of photosynthetic diversification.


Assuntos
Dióxido de Carbono , Poaceae , Poaceae/genética , Plantas , Fotossíntese/genética , Fenótipo
7.
Mol Biol Evol ; 38(9): 3724-3736, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33950261

RESUMO

The impact of human-mediated environmental change on the evolutionary trajectories of wild organisms is poorly understood. In particular, capacity of species to adapt rapidly (in hundreds of generations or less), reproducibly and predictably to extreme environmental change is unclear. Silene uniflora is predominantly a coastal species, but it has also colonized isolated, disused mines with phytotoxic, zinc-contaminated soils. To test whether rapid, parallel adaptation to anthropogenic pollution has taken place, we used reduced representation sequencing (ddRAD) to reconstruct the evolutionary history of geographically proximate mine and coastal population pairs and found largely independent colonization of mines from different coastal sites. Furthermore, our results show that parallel evolution of zinc tolerance has occurred without gene flow spreading adaptive alleles between mine populations. In genomic regions where signatures of selection were detected across multiple mine-coast pairs, we identified genes with functions linked to physiological differences between the putative ecotypes, although genetic differentiation at specific loci is only partially shared between mine populations. Our results are consistent with a complex, polygenic genetic architecture underpinning rapid adaptation. This shows that even under a scenario of strong selection and rapid adaptation, evolutionary responses to human activities (and other environmental challenges) may be idiosyncratic at the genetic level and, therefore, difficult to predict from genomic data.


Assuntos
Metais Pesados , Adaptação Fisiológica/genética , Ecótipo , Poluição Ambiental , Deriva Genética , Humanos , Metais Pesados/análise
8.
Mol Ecol ; 31(22): 5846-5860, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089907

RESUMO

Ecotypes are distinct populations within a species that are adapted to specific environmental conditions. Understanding how these ecotypes become established, and how they interact when reunited, is fundamental to elucidating how ecological adaptations are maintained. This study focuses on Themeda triandra, a dominant grassland species across Asia, Africa and Australia. It is the most widespread plant in Australia, where it has distinct ecotypes that are usually restricted to either wetter and cooler coastal regions or the drier and hotter interior. We generate a reference genome for T. triandra and use whole genome sequencing for over 80 Themeda accessions to reconstruct the evolutionary history of T. triandra and related taxa. Organelle phylogenies confirm that Australia was colonized by T. triandra twice, with the division between ecotypes predating their arrival in Australia. The nuclear genome provides evidence of differences in the dominant ploidal level and gene-flow among the ecotypes. In northern Queensland there appears to be a hybrid zone between ecotypes with admixed nuclear genomes and shared chloroplast haplotypes. Conversely, in the cracking claypans of Western Australia, there is cytonuclear discordance with individuals possessing the coastal chloroplast and interior clade nuclear genome. This chloroplast capture is potentially a result of adaptive introgression, with selection detected in the rpoC2 gene which is associated with water use efficiency. The reason that T. triandra is the most widespread plant in Australia appears to be a result of distinct ecotypic genetic variation and genome duplication, with the importance of each depending on the geographic scale considered.


Assuntos
Cloroplastos , Hibridização Genética , Austrália , Cloroplastos/genética , Variação Genética/genética , Haplótipos/genética , Filogenia
9.
Plant Cell Environ ; 45(5): 1398-1411, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35201618

RESUMO

C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.


Assuntos
Fotossíntese , Poaceae , Ciclo do Carbono , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Poaceae/genética , Regulação para Cima/genética
10.
J Exp Bot ; 73(10): 3189-3204, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35293994

RESUMO

Previous studies have demonstrated the ecological sorting of herbaceous C3 and C4 species along gradients of precipitation and temperature: C4 herbaceous species typically occupy drier and warmer environments than their C3 relatives. However, it is unclear if this pattern holds true for C4 tree species, which are unique to Euphorbiaceae and found only on the Hawaiian Islands. Here, we combine occurrence data with local environmental and soil datasets to, for the first time, distinguish the ecological factors associated with photosynthetic diversification in the tree life form. These data are presented within a phylogenetic framework. We show that C3 and C4 trees inhabit similar environments, but that C4 photosynthesis expands the ecological niche in trees relative to that of C3 tree species. In particular, when compared with C3 trees, C4 trees moved into higher elevation habitats with characteristically sparse vegetation (and thus greater sunlight) and cooler temperatures, a pattern which contrasts with that of herbaceous species. Understanding the relationship between C4 photosynthesis and ecological niche in tree species has implications for establishing how C4 photosynthesis has, in this rare instance, evolved in trees, and whether this unique combination of traits could be exploited from an engineering perspective.


Assuntos
Ecossistema , Fotossíntese , Ciclo do Carbono , Filogenia , Temperatura
11.
Proc Natl Acad Sci U S A ; 116(10): 4416-4425, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787193

RESUMO

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.


Assuntos
DNA de Plantas/genética , Transferência Genética Horizontal , Genes de Plantas , Poaceae/genética , Cromossomos de Plantas , Filogenia , Poaceae/classificação
12.
Mol Biol Evol ; 37(11): 3094-3104, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521019

RESUMO

The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.


Assuntos
Evolução Biológica , Transferência Genética Horizontal , Fosfoenolpiruvato Carboxilase/genética , Fotossíntese/genética , Poaceae/genética , Substituição de Aminoácidos , Poaceae/enzimologia
13.
New Phytol ; 230(6): 2474-2486, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887801

RESUMO

Lateral gene transfer (LGT) occurs in a broad range of prokaryotes and eukaryotes, occasionally promoting adaptation. LGT of functional nuclear genes has been reported among some plants, but systematic studies are needed to assess the frequency and facilitators of LGT. We scanned the genomes of a diverse set of 17 grass species that span more than 50 Ma of divergence and include major crops to identify grass-to-grass protein-coding LGT. We identified LGTs in 13 species, with significant variation in the amount each received. Rhizomatous species acquired statistically more genes, probably because this growth habit boosts opportunities for transfer into the germline. In addition, the amount of LGT increases with phylogenetic relatedness, which might reflect genomic compatibility among close relatives facilitating successful transfers. However, genetic exchanges among highly divergent species indicates that transfers can occur across almost the entire family. Overall, we showed that LGT is a widespread phenomenon in grasses that has moved functional genes across the grass family into domesticated and wild species alike. Successful LGTs appear to increase with both opportunity and compatibility.


Assuntos
Transferência Genética Horizontal , Poaceae , Evolução Molecular , Filogenia , Poaceae/genética , Células Procarióticas
14.
Mol Ecol ; 30(9): 2116-2130, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33682242

RESUMO

Geographical isolation facilitates the emergence of distinct phenotypes within a single species, but reproductive barriers or selection are needed to maintain the polymorphism after secondary contact. Here, we explore the processes that maintain intraspecific variation of C4 photosynthesis, a complex trait that results from the combined action of multiple genes. The grass Alloteropsis semialata includes C4 and non-C4 populations, which have coexisted as a polyploid series for more than 1 million years in the miombo woodlands of Africa. Using population genomics, we show that there is genome-wide divergence for the photosynthetic types, but the current geographical distribution does not reflect a simple habitat displacement scenario as the genetic clusters overlap, being occasionally mixed within a given habitat. Despite evidence of recurrent introgression between non-C4 and C4 groups, in both diploids and polyploids, the distinct genetic lineages retain their identity, potentially because of selection against hybrids. Coupled with strong isolation by distance within each genetic group, this selection created a geographical mosaic of photosynthetic types. Diploid C4 and non-C4 types never grew together, and the C4 type from mixed populations constantly belonged to the hexaploid lineage. By limiting reproductive interactions between photosynthetic types, the ploidy difference probably allows their co-occurrence, reinforcing the functional diversity within this species. Together, these factors enabled the persistence of divergent physiological traits of ecological importance within a single species despite gene flow and habitat overlap.


Assuntos
Fluxo Gênico , Poaceae , África , Ecossistema , Fotossíntese/genética , Poaceae/genética , Poliploidia
15.
Proc Biol Sci ; 287(1938): 20201960, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171085

RESUMO

C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin.


Assuntos
Evolução Biológica , Poaceae/fisiologia , Carbono , Fluxo Gênico , Genoma , Organelas , Fenótipo , Fotossíntese/fisiologia , Filogenia , Poliploidia
16.
Ecol Lett ; 22(2): 302-312, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30557904

RESUMO

C4 photosynthesis is a complex trait that boosts productivity in warm environments. Paradoxically, it evolved independently in numerous plant lineages, despite requiring specialised leaf anatomy. The anatomical modifications underlying C4 evolution have previously been evaluated through interspecific comparisons, which capture numerous changes besides those needed for C4 functionality. Here, we quantify the anatomical changes accompanying the transition between non-C4 and C4 phenotypes by sampling widely across the continuum of leaf anatomical traits in the grass Alloteropsis semialata. Within this species, the only trait that is shared among and specific to C4 individuals is an increase in vein density, driven specifically by minor vein development that yields multiple secondary effects facilitating C4 function. For species with the necessary anatomical preconditions, developmental proliferation of veins can therefore be sufficient to produce a functional C4 leaf anatomy, creating an evolutionary entry point to complex C4 syndromes that can become more specialised.


Assuntos
Fotossíntese , Poaceae , Folhas de Planta/anatomia & histologia , Plantas
17.
Mol Biol Evol ; 35(1): 94-106, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040657

RESUMO

Novel adaptations are generally assembled by co-opting pre-existing genetic components, but the factors dictating the suitability of genes for new functions remain poorly known. In this work, we used comparative transcriptomics to determine the attributes that increased the likelihood of some genes being co-opted for C4 photosynthesis, a convergent complex trait that boosts productivity in tropical conditions. We show that independent lineages of grasses repeatedly co-opted the gene lineages that were the most highly expressed in non-C4 ancestors to produce their C4 pathway. Although ancestral abundance in leaves explains which genes were used for the emergence of a C4 pathway, the tissue specificity has surprisingly no effect. Our results suggest that levels of key genes were elevated during the early diversification of grasses and subsequently repeatedly used to trigger a weak C4 cycle via relatively few mutations. The abundance of C4-suitable transcripts therefore facilitated physiological innovation, but the transition to a strong C4 pathway still involved consequent changes in expression levels, leaf specificity, and coding sequences. The direction and amount of changes required for the strong C4 pathway depended on the identity of the genes co-opted, so that ancestral gene expression both facilitates adaptive transitions and constrains subsequent evolutionary trajectories.


Assuntos
Fotossíntese/genética , Poaceae/genética , Evolução Biológica , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Filogenia , Folhas de Planta/genética , Transcriptoma/genética
19.
J Exp Bot ; 70(12): 3255-3268, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949663

RESUMO

C4 photosynthesis is a complex trait that boosts productivity in tropical conditions. Compared with C3 species, the C4 state seems to require numerous novelties, but species comparisons can be confounded by long divergence times. Here, we exploit the photosynthetic diversity that exists within a single species, the grass Alloteropsis semialata, to detect changes in gene expression associated with different photosynthetic phenotypes. Phylogenetically informed comparative transcriptomics show that intermediates with a weak C4 cycle are separated from the C3 phenotype by increases in the expression of 58 genes (0.22% of genes expressed in the leaves), including those encoding just three core C4 enzymes: aspartate aminotransferase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxylase. The subsequent transition to full C4 physiology was accompanied by increases in another 15 genes (0.06%), including only the core C4 enzyme pyruvate orthophosphate dikinase. These changes probably created a rudimentary C4 physiology, and isolated populations subsequently improved this emerging C4 physiology, resulting in a patchwork of expression for some C4 accessory genes. Our work shows how C4 assembly in A. semialata happened in incremental steps, each requiring few alterations over the previous step. These create short bridges across adaptive landscapes that probably facilitated the recurrent origins of C4 photosynthesis through a gradual process of evolution.


Assuntos
Carbono/metabolismo , Expressão Gênica , Poaceae/fisiologia , Evolução Biológica , Fenótipo , Poaceae/enzimologia , Poaceae/genética
20.
J Exp Bot ; 69(8): 1967-1980, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29394370

RESUMO

The importance of gene duplication for evolutionary diversification has been mainly discussed in terms of genetic redundancy allowing neofunctionalization. In the case of C4 photosynthesis, which evolved via the co-option of multiple enzymes to boost carbon fixation in tropical conditions, the importance of genetic redundancy has not been consistently supported by genomic studies. Here, we test for a different role for gene duplication in the early evolution of C4 photosynthesis, via dosage effects creating rapid step changes in expression levels. Using genome-wide data for accessions of the grass genus Alloteropsis that recently diversified into different photosynthetic types, we estimate gene copy numbers and demonstrate that recurrent duplications in two important families of C4 genes coincided with increases in transcript abundance along the phylogeny, in some cases via a pure dosage effect. While increased gene copy number during the initial emergence of C4 photosynthesis probably offered a rapid route to enhanced expression, we also find losses of duplicates following the acquisition of genes encoding better-suited isoforms. The dosage effect of gene duplication might therefore act as a transient process during the evolution of a C4 biochemistry, rendered obsolete by the fixation of regulatory mutations increasing expression levels.


Assuntos
Dosagem de Genes , Duplicação Gênica , Fotossíntese , Proteínas de Plantas/genética , Poaceae/genética , Evolução Biológica , Filogenia , Poaceae/classificação , Poaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA