Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Virologie (Montrouge) ; 19(1): 19-31, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065897

RESUMO

Densoviruses (DVs) are parvoviruses of arthropods and causative agents of natural epizootics in insects and crustaceans populations. Structurally simple, these small DNA viruses, display a large diversity of genomic sequences, structures and organizations. Such diversity, together with the diversity of their invertebrate hosts, from shrimps to mosquitoes and recently including sea stars, suggests that DVs are largely unknown and ubiquitous in the environment. Densoviruses are considered as a model of choice to study virus-host interactions and their evolution at different scales, from individuals to populations. This review summarizes the knowledge on densovirus biology obtained through mechanistic and global approaches. Finally, the potential use of these viruses as biological control agents against insect pests and disease-vectors are exposed.

2.
J Virol ; 83(9): 4678-89, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19225003

RESUMO

Junonia coenia densovirus (JcDNV) is an ambisense insect parvovirus highly pathogenic for lepidopteran pests at larval stages. The potential use of DNVs as biological control agents prompted us to reinvestigate the host range and cellular mechanisms of infection. In order to understand the early events of infection, we set up a functional infection assay in a cell line of the pest Lymantria dispar to determine the intracellular pathway undertaken by JcDNV to infect a permissive lepidopteran cell line. Our results show that JcDNV particles are rapidly internalized into clathrin-coated vesicles and slowly traffic within early and late endocytic compartments. Blocking late-endocytic trafficking or neutralizing the pH with drugs inhibited infection. During internalization, disruption of the cytoskeleton, and inhibition of phosphatidylinositol 3-kinase blocked the movement of vesicles containing the virus to the nucleus and impaired infection. In summary, our results define for the first time the early endocytic steps required for a productive DNV infection.


Assuntos
Clatrina/metabolismo , Densovirus/metabolismo , Endocitose , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Densovirus/genética , Densovirus/ultraestrutura , Cinética , Microscopia Eletrônica , Spodoptera , Fatores de Tempo , Internalização do Vírus
3.
Viruses ; 11(9)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533310

RESUMO

The success of oral infection by viruses depends on their capacity to overcome the gut epithelial barrier of their host to crossing over apical, mucous extracellular matrices. As orally transmitted viruses, densoviruses, are also challenged by the complexity of the insect gut barriers, more specifically by the chitinous peritrophic matrix, that lines and protects the midgut epithelium; how capsids stick to and cross these barriers to reach their final cell destination where replication goes has been poorly studied in insects. Here, we analyzed the early interaction of the Junonia coenia densovirus (JcDV) with the midgut barriers of caterpillars from the pest Spodoptera frugiperda. Using combination of imaging, biochemical, proteomic and transcriptomic analyses, we examined in vitro, ex vivo and in vivo the early interaction of the capsids with the peritrophic matrix and the consequence of early oral infection on the overall gut function. We show that the JcDV particle rapidly adheres to the peritrophic matrix through interaction with different glycans including chitin and glycoproteins, and that these interactions are necessary for oral infection. Proteomic analyses of JcDV binding proteins of the peritrophic matrix revealed mucins and non-mucins proteins including enzymes already known to act as receptors for several insect pathogens. In addition, we show that JcDV early infection results in an arrest of N-Acetylglucosamine secretion and a disruption in the integrity of the peritrophic matrix, which may help viral particles to pass through. Finally, JcDV early infection induces changes in midgut genes expression favoring an increased metabolism including an increased translational activity. These dysregulations probably participate to the overall dysfunction of the gut barrier in the early steps of viral pathogenesis. A better understanding of early steps of densovirus infection process is crucial to build biocontrol strategies against major insect pests.


Assuntos
Densovirus/fisiologia , Controle Biológico de Vetores , Polissacarídeos/metabolismo , Spodoptera/virologia , Animais , Perfilação da Expressão Gênica , Proteômica
4.
PeerJ ; 6: e4860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868273

RESUMO

BACKGROUND: The Lepidopteran ambidensovirus 1 isolated from Junonia coenia (hereafter JcDV) is an invertebrate parvovirus considered as a viral transduction vector as well as a potential tool for the biological control of insect pests. Previous works showed that JcDV-based circular plasmids experimentally integrate into insect cells genomic DNA. METHODS: In order to approach the natural conditions of infection and possible integration, we generated linear JcDV-gfp based molecules which were transfected into non permissive Spodoptera frugiperda (Sf9) cultured cells. Cells were monitored for the expression of green fluorescent protein (GFP) and DNA was analyzed for integration of transduced viral sequences. Non-structural protein modulation of the VP-gene cassette promoter activity was additionally assayed. RESULTS: We show that linear JcDV-derived molecules are capable of long term genomic integration and sustained transgene expression in Sf9 cells. As expected, only the deletion of both inverted terminal repeats (ITR) or the polyadenylation signals of NS and VP genes dramatically impairs the global transduction/expression efficiency. However, all the integrated viral sequences we characterized appear "scrambled" whatever the viral content of the transfected vector. Despite a strong GFP expression, we were unable to recover any full sequence of the original constructs and found rearranged viral and non-viral sequences as well. Cellular flanking sequences were identified as non-coding ones. On the other hand, the kinetics of GFP expression over time led us to investigate the apparent down-regulation by non-structural proteins of the VP-gene cassette promoter. CONCLUSION: Altogether, our results show that JcDV-derived sequences included in linear DNA molecules are able to drive efficiently the integration and expression of a foreign gene into the genome of insect cells, whatever their composition, provided that at least one ITR is present. However, the transfected sequences were extensively rearranged with cellular DNA during or after random integration in the host cell genome. Lastly, the non-structural proteins seem to participate in the regulation of p9 promoter activity rather than to the integration of viral sequences.

5.
Carcinogenesis ; 23(11): 1885-95, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12419837

RESUMO

The maternally expressed H19 gene is transcribed as an untranslated RNA that serves as a riboregulator. We have previously reported that this transcript accumulates in epithelial cells in approximately 10% of breast cancers. To gain further insight on how the overexpression of the H19 gene affects the phenotype of human breast epithelial cells, we investigated the oncogenic potential of RNA that was abundantly expressed from MDA-MB-231 breast cancer cells stably transfected with the genomic sequence of the human H19 gene. The amount of H19 RNA did not affect cell proliferation capacity, timing of cell cycle phases or anchorage-dependent ability of H19-transfected clones in vitro. But in anchorage-independent growth assays the H19-recombined cells formed more and larger colonies in soft-agar versus control cells. To explore this phenotypic change, we analysed tumour development after subcutaneous injection of H19-recombined cells into scid mice. Results showed that H19 overexpression promotes tumour progression. These data support the hypothesis that an overload of H19 transcript is associated with cells exhibiting higher tumorigenic phenotypes and therefore we conclude that the H19 gene has oncogenic properties in breast epithelial cells.


Assuntos
Adenocarcinoma/patologia , Neoplasias da Mama/patologia , RNA não Traduzido/fisiologia , Adenocarcinoma/genética , Animais , Neoplasias da Mama/genética , Progressão da Doença , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Fenótipo , RNA Longo não Codificante , RNA não Traduzido/genética , Proteínas Recombinantes de Fusão/fisiologia , Transfecção , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA