Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Pharm Fr ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089365

RESUMO

Parkinson's disease (PD) is a widely seen neurodegenerative condition recognized by misfolded α-synuclein (αSyn) protein, a prominent indicator for PD and other synucleinopathies. Motor symptoms like stiffness, akinesia, rest tremor, and postural instability coexist with nonmotor symptoms that differ from person to person in the development of PD. These symptoms arise from a progressive loss of synapses and neurons, leading to a widespread degenerative process in multiple organs. Implementing medical and surgical interventions, such as deep brain stimulation, has enhanced individuals' overall well-being and long-term survival with PD. It should be mentioned that these treatments cannot stop the condition from getting worse. The complicated structure of the brain and the existence of a semi-permeable barrier, commonly known as the BBB, have traditionally made medication delivery for the treatment of PD a challenging endeavor. The drug's low lipophilic nature, enormous size, and peculiarity for various ATP-dependent transport mechanisms hinder its ability to enter brain cells. This article delves at the potential of drug delivery systems based on chitosan (CS) to treat PD.

2.
Pharm Res ; 39(11): 2817-2829, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36195824

RESUMO

PURPOSE: The aim of current study is to formulate, optimize and characterize the developed formulation of Mesalamine-Curcumin Nanostructured Lipid Carriers (Mes-Cur NLCs). METHODS: It was formulated using high pressure homogenization followed by probe sonication and formulation variables were optimized using Central Composite Design. The particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug release, cytotoxicity on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells and efficacy on RAW264.7 cells for optimized formulation was determined. RESULTS: The PS, ZP and EE were found to be 85.26 nm, -23.7 ± 7.45 mV, 99.2 ± 2.62 % (Mes) and 84 ± 1.51 % (Cur), respectively. The good correlation between predicted and obtained value indicated suitability and reproducibility of experimental design. NLCs showed spherical shape as confirmed by TEM. In vitro drug release profile of prepared formulation showed that Mes exhibited 100 % release at 48 h, whereas Cur exhibited 82.23 ± 2.97% release at 120 h. Both the drugs exhibited sustained release upon incorporation into the NLCs. The absence of any significant cell death during MTT assay performed on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells indicated that NLCs' were safe for use. Furthermore, significant reduction in nitric oxide level during anti-inflammatory evaluation of formulation on RAW264.7 cells showed excellent potential for the formulation to treat inflammation. The formulation was found stable as no significant difference between the PS, ZP and EE of the fresh and aged NLCs was observed. CONCLUSION: The outcomes of study deciphered successful formulation of Mes-Cur NLCs.


Assuntos
Curcumina , Nanoestruturas , Curcumina/farmacologia , Portadores de Fármacos , Mesalamina , Lipídeos , Reprodutibilidade dos Testes , Tamanho da Partícula
3.
J Biochem Mol Toxicol ; 36(10): e23174, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35861662

RESUMO

Respiratory diseases (RDs), such as chronic obstructive pulmonary disease, cystic fibrosis, asthma, and pneumonia, are associated with significant morbidity and mortality. Treatment usually consists of antibiotics and steroids. Relevant published literature reviews, studies, and clinical trials were accessed from institutional and electronic databases. The keywords used were respiratory diseases, steroids, antibiotics, and combination of steroids and antibiotics. Selected articles and literature were carefully reviewed. Antibiotics are often prescribed as the standard therapy to manage RDs. Types of causative respiratory pathogens, spectrum of antibiotics activity, route of administration, and course of therapy determine the type of antibiotics that are prescribed. Despite being associated with good clinical outcome, treatment failure and recurrence rate are still high. In addition, antibiotic resistance has been widely reported due to bacterial mutations in response to the use of antibiotics, which render them ineffective. Nevertheless, there has been a growing demand for corticosteroids (CS) and antibiotics to treat a wide variety of diseases, including various airway diseases, due to their immunosuppressive and anti-inflammatory properties. The use of CS is well established and there are different formulations based on the diseases, such as topical administration, tablets, intravenous injections, and inhaled preparations. Both antibiotics and CS possess similar properties in terms of their anti-inflammatory effects, especially regulating cytokine release. Thus, the current review examines and discusses the different applications of antibiotics, CS, and their combination in managing various RDs. Drawbacks of these interventions are also discussed.


Assuntos
Antibacterianos , Esteroides , Corticosteroides/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios , Citocinas , Esteroides/uso terapêutico
4.
J Integr Neurosci ; 21(1): 41, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164477

RESUMO

Computational approach to study of neuronal impairment is rapidly evolving, as experiments and intuition alone could not explain the complexity of brain system. The increase in an overwhelming amount of new data from both theory and computational modeling necessitate the development of databases and tools for analysis, visualization, and interpretation of neuroscience data. To ensure the sustainability of this development, consistent update and training of young professionals are imperative. For this purpose, relevant articles, chapters, and modules are essential to keep abreast of developments. Therefore, this article seeks to outline the biological databases and analytical tools along with their applications. It's envisaged that knowledge along this line would be a "training recipe" for young talents and guide for professionals and researchers in neuroscience.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Doenças do Sistema Nervoso , Humanos
5.
Inflammopharmacology ; 30(3): 725-735, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316427

RESUMO

The chronic respiratory non-communicable diseases, asthma and chronic obstructive pulmonary disease (COPD) are among the leading causes of global mortality and morbidity. Individuals suffering from these diseases are particularly susceptible to respiratory infections caused by bacterial and/or viral pathogens, which frequently result in exacerbation of symptoms, lung function decline, frequent hospital emergency visits and increased socioeconomic burden. Human rhinoviruses (HRV) remain the major viral pathogen group implicated in exacerbations of both asthma and COPD. The rhinoviral entry into the host lung epithelium is facilitated primarily by the adhesion site ("receptor") intercellular adhesion molecule-1 (ICAM-1), coincidentally expressed on the respiratory epithelium in these conditions. Multiple observations of increased airway ICAM-1 protein in asthmatics, smokers and smoking-related COPD have been recorded in the literature. However, the lack of robust therapies for COPD in particular has triggered a renewed interest in assessing receptor antagonism-based anti-viral strategies for treatment of intercurrent viral infections in those with pre-existing chronic lung diseases. Given the crucial role ICAM-1 plays in facilitating HRV adhesion and, thus, transmissibility to the host respiratory system, as well as the up-regulation of ICAM-1 by smoking, we summarize the role of HRV in smoking-induced COPD and especially highlight the role of ICAM-1 in epithelial viral adhesion and chronic lung disease progression. Further, the review also sheds light specifically on evolving precision therapeutic strategies in blocking ICAM-1 for preventing viral adhesion and exacerbations of COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Mucosa Respiratória/metabolismo , Rhinovirus/metabolismo
6.
Future Oncol ; 17(29): 3873-3880, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34263659

RESUMO

The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.


Assuntos
Terapia de Alvo Molecular , Medicina de Precisão , Neoplasias da Próstata/terapia , Proteínas de Ligação a RNA/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia
7.
Drug Dev Res ; 82(7): 880-882, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323298

RESUMO

COVID-19's second wave had a significant impact on India, on May 7, 2021, the largest daily recorded case count was a little more than 4 million, and it has since fallen. Although the number of new cases reported has dropped, during the third week of May 2021, India accounted for about 45% of new cases identified globally and around 34% of deaths. As India maintains its present level of stability, a new urgent threat has emerged in the form of coronavirus-associated mucormycosis. Mucormycosis, an acute and deadly fungal infection caused by Mucorales-related fungal species, is a fungal emergency with a particularly aggressive propensity for contiguous spread, associated with a poor prognosis if not properly and immediately identified, and treated. Mucormycosis, sometimes referred to as the "black fungus," has increased more rapidly in India during the second wave of COVID-19 than during the first wave, with at least 14,872 cases as of May 28, 2021. Uncontrolled diabetic mellitus (DM) and other immunosuppressive diseases such as neutropenia and corticosteroid treatment have traditionally been identified as risk factors for mucormycosis. Therefore, the use of glucocorticoids or high doses of glucocorticoids in mild COVID-19 cases (without hypoxemia) should be avoided. In addition, drugs that target the immune pathway, such as tocilizumab, are not recommended without clear benefits.


Assuntos
Antibacterianos/efeitos adversos , COVID-19/complicações , Mucormicose/epidemiologia , Mucormicose/etiologia , Uso Indevido de Medicamentos sob Prescrição , Antibacterianos/uso terapêutico , Serviços Médicos de Emergência , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Humanos , Índia , Pandemias , Prognóstico , Fatores de Risco , Tratamento Farmacológico da COVID-19
8.
Drug Dev Res ; 82(6): 784-788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687087

RESUMO

Over the recent decades, a number of new pathogens have emerged within specific and diverse populations across the globe, namely, the Nipah virus, the Ebola virus, the Zika virus, and coronaviruses (CoVs) to name a few. Recently, a new form of coronavirus was identified in the city of Wuhan, China. Interestingly, the genomic architecture of the virus did not match with any of the existing genomic sequencing data of previously sequenced CoVs. This had led scientists to confirm the emergence of a new CoV strain. Originally, named as 2019-nCoV, the strain is now called as SARS-CoV-2. High serum levels of proinflammatory mediators, namely, interleukin-12 (IL-12), IL-1ß, IL-6, interferon-gamma (IFNγ), chemoattractant protein-1, and IFN-inducible protein, have been repeatedly observed in subjects who were infected with this virus. In addition, the virus demonstrated strong coagulation activation properties, leading to further the understanding on the SARS-CoV2. To our understanding, these findings are unique to the published literature. Numerous studies have reported anomalies, namely, decline in the number of lymphocytes, platelets and albumins; and a rise in neutrophil count, aspartate transaminase, alanine aminotransaminase, lactate dehydrogenase, troponins, creatinine, complete bilirubin, D-dimers, and procalcitonin. Supplementation of calcium during the SARS CoV-2 associated hyperactive stage of calcium-sensing receptors (CaSR) may be harmful to the cardio-renal system. Thus, pharmacological inhibition of CaSR may prevent the increase in the levels of intracellular calcium, oxidative, inflammatory stress, and cardio-renal cellular apoptosis induced by high cytokines level in COVID-19 infection.


Assuntos
COVID-19/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , Receptores de Detecção de Cálcio/metabolismo , SARS-CoV-2/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , COVID-19/virologia , Cálcio/metabolismo , Humanos , Terapia de Alvo Molecular , Receptores de Detecção de Cálcio/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
9.
AAPS PharmSciTech ; 22(5): 173, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34105037

RESUMO

Middle East respiratory syndrome (MERS) is a lethal respiratory disease with its first case reported back in 2012 (Jeddah, Saudi Arabia). It is a novel, single-stranded, positive-sense RNA beta coronavirus (MERS-CoV) that was isolated from a patient who died from a severe respiratory illness. Later, it was found that this patient was infected with MERS. MERS is endemic to countries in the Middle East regions, such as Saudi Arabia, Jordan, Qatar, Oman, Kuwait and the United Arab Emirates. It has been reported that the MERS virus originated from bats and dromedary camels, the natural hosts of MERS-CoV. The transmission of the virus to humans has been thought to be either direct or indirect. Few camel-to-human transmissions were reported earlier. However, the mode of transmission of how the virus affects humans remains unanswered. Moreover, outbreaks in either family-based or hospital-based settings were observed with high mortality rates, especially in individuals who did not receive proper management or those with underlying comorbidities, such as diabetes and renal failure. Since then, there have been numerous reports hypothesising complications in fatal cases of MERS. Over the years, various diagnostic methods, treatment strategies and preventive measures have been strategised in containing the MERS infection. Evidence from multiple sources implicated that no treatment options and vaccines have been developed in specific, for the direct management of MERS-CoV infection. Nevertheless, there are supportive measures outlined in response to symptom-related management. Health authorities should stress more on infection and prevention control measures, to ensure that MERS remains as a low-level threat to public health.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Antivirais/administração & dosagem , Antivirais/imunologia , Camelus/virologia , Quirópteros/virologia , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Arábia Saudita/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/imunologia , Zoonoses Virais/transmissão
10.
Crit Rev Eukaryot Gene Expr ; 30(3): 245-252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749111

RESUMO

Peutz-Jeghers syndrome (PJS) is a well-described inherited syndrome, characterized by the development of gastrointestinal polyps and characteristic mucocutaneous freckling. PJS is an autosomal prevailing disease, due to genetic mutation on chromosome 19p, manifested by restricted mucocutaneous melanosis in association with gastrointestinal (GI) polyposis. The gene for PJS has recently been shown to be a serine/threonine kinase, known as LKB1 or STK11, which maps to chromosome subband 19p13.3. This gene has a putative coding region of 1302 bp, divided into nine exons, and acts as a tumor suppressor in the hamartomatous polyps of PJS patients and in the other neoplasms that develop in PJS patients. It is probable that these neoplasms develop from hamartomas, but it remains possible that the LKB1 or STK11 locus plays a role in a different genetic pathway of tumor growth in the cancers of PJS patients. This article focuses on the role of LKB1 or STK11 gene expression in PJS and related cancers.


Assuntos
Síndrome de Peutz-Jeghers/enzimologia , Síndrome de Peutz-Jeghers/genética , Proteínas Serina-Treonina Quinases/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Mutação , Neoplasias/genética , Síndrome de Peutz-Jeghers/patologia
11.
Drug Dev Res ; 81(4): 419-436, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048757

RESUMO

Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neutrófilos/metabolismo , Doenças Respiratórias/tratamento farmacológico , Animais , Doença Crônica , Humanos , Sistema Imunitário/imunologia , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Neutrófilos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Doenças Respiratórias/imunologia , Doenças Respiratórias/fisiopatologia
12.
Inflammopharmacology ; 28(4): 795-817, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32189104

RESUMO

Respiratory disorders, especially non-communicable, chronic inflammatory diseases, are amongst the leading causes of mortality and morbidity worldwide. Respiratory diseases involve multiple pulmonary components, including airways and lungs that lead to their abnormal physiological functioning. Several signaling pathways have been reported to play an important role in the pathophysiology of respiratory diseases. These pathways, in addition, become the compounding factors contributing to the clinical outcomes in respiratory diseases. A range of signaling components such as Notch, Hedgehog, Wingless/Wnt, bone morphogenetic proteins, epidermal growth factor and fibroblast growth factor is primarily employed by these pathways in the eventual cascade of events. The different aberrations in such cell-signaling processes trigger the onset of respiratory diseases making the conventional therapeutic modalities ineffective. These challenges have prompted us to explore novel and effective approaches for the prevention and/or treatment of respiratory diseases. In this review, we have attempted to deliberate on the current literature describing the role of major cell signaling pathways in the pathogenesis of pulmonary diseases and discuss promising advances in the field of therapeutics that could lead to novel clinical therapies capable of preventing or reversing pulmonary vascular pathology in such patients.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Doenças Respiratórias/metabolismo , Doenças Respiratórias/patologia , Transdução de Sinais/fisiologia , Animais , Doença Crônica , Humanos
13.
J Cell Physiol ; 234(10): 16703-16723, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912142

RESUMO

Chronic obstructive pulmonary disease accounts as the leading cause of mortality worldwide prominently affected by genetic and environmental factors. The disease is characterized by persistent coughing, breathlessness airways inflammation followed by a decrease in forced expiratory volume1 and exacerbations, which affect the quality of life. Determination of genetic, epigenetic, and oxidant biomarkers to evaluate the progression of disease has proved complicated and challenging. Approaches including exome sequencing, genome-wide association studies, linkage studies, and inheritance and segregation studies played a crucial role in the identification of genes, their pathways and variation in genes. This review highlights multiple approaches for biomarker and gene identification, which can be used for differential diagnosis along with the genome editing tools to study genes associated with the development of disease and models their function. Further, we have discussed the approaches to rectify the abnormal gene functioning of respiratory tissues and various novel gene editing techniques like Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9).


Assuntos
Terapia Genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/terapia , Biomarcadores , Edição de Genes , Humanos
17.
Skinmed ; 13(3): 191-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380505

RESUMO

The regulatory framework, compliance requirement, efficacy, safety, and marketing of cosmetic products are considered the most important factors for growth of the cosmetic industry. There are different regulatory bodies across the globe that have their own insights for regulation; moreover, governments such as the United States, European Union, and Japan follow a stringent regulatory framework, whereas cosmetics are not so much strictly regulated in countries such as India, Brazil, and China. The alignment of a regulatory framework will play a significant role in the removal of barriers to trade, growth of market at an international level, innovation in the development and presentation of new products, and most importantly safety and efficacy of the marketed products. The present contribution gives insight into the important cosmetic regulations in areas of premarket approval, ingredient control, and labeling and warnings, with a special focus on the cosmetic regulatory environments in the United States, European Union, Japan, and India. Most importantly, the authors highlight the dark side of cosmetics associated with allergic reactions and even skin cancer. The importance of cosmetic regulations has been highlighted by dint of which the society can be healthier, accomplished by more stringent and harmonized regulations.


Assuntos
Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Cosméticos , Aprovação de Drogas/organização & administração , União Europeia , Humanos , Índia , Japão , Rotulagem de Produtos/legislação & jurisprudência , Estados Unidos
18.
Chem Biol Interact ; 395: 111000, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38614318

RESUMO

Nucleic acid delivery by viral and non-viral methods has been a cornerstone for the contemporary gene therapy aimed at correcting the defective genes, replacing of the missing genes, or downregulating the expression of anomalous genes is highly desirable for the management of various diseases. Ostensibly, it becomes paramount for the delivery vectors to intersect the biological barriers for accessing their destined site within the cellular environment. However, the lipophilic nature of biological membranes and their potential to limit the entry of large sized, charged, hydrophilic molecules thus presenting a sizeable challenge for the cellular integration of negatively charged nucleic acids. Furthermore, the susceptibility of nucleic acids towards the degrading enzymes (nucleases) in the lysosomes present in cytoplasm is another matter of concern for their cellular and nuclear delivery. Hence, there is a pressing need for the identification and development of cationic delivery systems which encapsulate the cargo nucleic acids where the charge facilitates their cellular entry by evading the membrane barriers, and the encapsulation shields them from the enzymatic attack in cytoplasm. Cycloamylose bearing a closed loop conformation presents a robust candidature in this regard owing to its remarkable encapsulating tendency towards nucleic acids including siRNA, CpG DNA, and siRNA. The presence of numerous hydroxyl groups on the cycloamylose periphery provides sites for its chemical modification for the introduction of cationic groups, including spermine, (3-Chloro-2 hydroxypropyl) trimethylammonium chloride (Q188), and diethyl aminoethane (DEAE). The resulting cationic cycloamylose possesses a remarkable transfection efficiency and provides stability to cargo oligonucleotides against endonucleases, in addition to modulating the undesirable side effects such as unwanted immune stimulation. Cycloamylose is known to interact with the cell membranes where they release certain membrane components such as phospholipids and cholesterol thereby resulting in membrane destabilization and permeabilization. Furthermore, cycloamylose derivatives also serve as formulation excipients for improving the efficiency of other gene delivery systems. This review delves into the various vector and non-vector-based gene delivery systems, their advantages, and limitations, eventually leading to the identification of cycloamylose as an ideal candidate for nucleic acid delivery. The synthesis of cationic cycloamylose is briefly discussed in each section followed by its application for specific delivery/transfection of a particular nucleic acid.


Assuntos
Cátions , Ácidos Nucleicos , Ácidos Nucleicos/química , Cátions/química , Humanos , Nanopartículas/química , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Animais
19.
Curr Drug Deliv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38445696

RESUMO

Chronic Obstructive Pulmonary Disease (COPD), a chronic lung disease that causes breathing difficulties and obstructs airflow from the lungs, has a significant global health burden and affects millions of people worldwide. The use of pharmaceuticals in COPD treatment is aimed to alleviate symptoms, improve lung function, prevent exacerbations, and enhance the overall quality of life for patients. Nanotechnology holds great promise to alleviate the burden of COPD. The main goal of this review is to present the full spectrum of therapeutics based on nanostructures for the treatment and management of COPD, including nanoparticles, polymeric nanoparticles, polymeric micelles, solid-lipid nanoparticles, liposomes, exosomes, nanoemulsions, nanosuspensions, and niosomes. Nanotechnology is just one of the many areas of research that may contribute to the development of more effective and personalized treatment modalities for COPD patients in the future. Future studies may be focused on enhancing the therapeutic effectiveness of nanocarriers by conducting extensive mechanistic investigations to translate current scientific knowledge for the effective management of COPD with little or no adverse effects.

20.
Curr Pharm Biotechnol ; 25(17): 2218-2252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415490

RESUMO

BACKGROUND: A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE: This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS: Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS: Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION: The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.


Assuntos
Sistemas de Liberação de Medicamentos , Emulsões , Emulsões/química , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Praguicidas/química , Animais , Disponibilidade Biológica , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA