Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Public Health ; 112(9): 1249-1252, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862880

RESUMO

Georgia implemented a statewide family history screening program for hereditary breast and ovarian cancer. From November 2012 through December 2020, 29 090 individuals were screened, 16 679 of whom (57.3%) self-identified as a racial/ethnic minority. Of the 4% (1172/29 090) of individuals who screened as high risk, more than half underwent genetic consultation (793/1172; 67.7%) and testing (416/589; 70.6%). Compared with White women, Black and Hispanic women had higher uptake rates of genetic consultation. Public health settings serving racial minorities are well suited to address disparities in genetic service access. (Am J Public Health. 2022;112(9):1249-1252. https://doi.org/10.2105/AJPH.2022.306932).


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Detecção Precoce de Câncer , Etnicidade , Feminino , Georgia , Humanos , Grupos Minoritários , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética
2.
HGG Adv ; 5(3): 100316, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38850022

RESUMO

Copy-number variants (CNVs) are genome-wide structural variations involving the duplication or deletion of large nucleotide sequences. While these types of variations can be commonly found in humans, large and rare CNVs are known to contribute to the development of various neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). Nevertheless, given that these NDD-risk CNVs cover broad regions of the genome, it is particularly challenging to pinpoint the critical gene(s) responsible for the manifestation of the phenotype. In this study, we performed a meta-analysis of CNV data from 11,614 affected individuals with NDDs and 4,031 control individuals from SFARI database to identify 41 NDD-risk CNV loci, including 24 novel regions. We also found evidence for dosage-sensitive genes within these regions being significantly enriched for known NDD-risk genes and pathways. In addition, a significant proportion of these genes was found to (1) converge in protein-protein interaction networks, (2) be among most expressed genes in the brain across all developmental stages, and (3) be hit by deletions that are significantly over-transmitted to individuals with ASD within multiplex ASD families from the iHART cohort. Finally, we conducted a burden analysis using 4,281 NDD cases from Decipher and iHART cohorts, and 2,504 neurotypical control individuals from 1000 Genomes and iHART, which resulted in the validation of the association of 162 dosage-sensitive genes driving risk for NDDs, including 22 novel NDD-risk genes. Importantly, most NDD-risk CNV loci entail multiple NDD-risk genes in agreement with a polygenic model associated with the majority of NDD cases.

3.
Front Health Serv ; 4: 1254294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523649

RESUMO

The Georgia Center for Oncology Research and Education (Georgia CORE) and the Georgia Society of Clinical Oncology (GASCO) held a one-day summit exploring opportunities and evidence-based interventions to address disparities in cancer clinical trials. The purpose of the summit was to identify clear and concise recommendations aimed at decreasing clinical trial accrual disparities in Georgia for rural and minority populations. The summit included expert presentations, panel discussions with leaders from provider organizations throughout Georgia, and breakout sessions to allow participants to critically discuss the information presented. Over 120 participants attended the summit. Recognizing the need for evidence-based interventions to improve clinical trial accrual among rural Georgians and persons of color, summit participants identified four key areas of focus that included: improving clinical trial design, providing navigation for all, enhancing public education and awareness of cancer clinical trials, and identifying potential policy and other opportunities. A comprehensive list of takeaways and action plans was developed in the four key areas of focus with the expectation that implementation of the strategies that emerged from the summit will enhance cancer clinical trial accrual for all Georgians.

4.
Biomedicines ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790952

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. The diagnosis of ASD is currently based on behavior criteria, which overlooks the diversity of genetic, neurophysiological, and clinical manifestations. Failure to acknowledge such heterogeneity has hindered the development of efficient drug treatments for ASD and other NDDs. DEPI® (Databased Endophenotyping Patient Identification) is a systems biology, multi-omics, and machine learning-driven platform enabling the identification of subgroups of patients with NDDs and the development of patient-tailored treatments. In this study, we provide evidence for the validation of a first clinically and biologically defined subgroup of patients with ASD identified by DEPI, ASD Phenotype 1 (ASD-Phen1). Among 313 screened patients with idiopathic ASD, the prevalence of ASD-Phen1 was observed to be ~24% in 84 patients who qualified to be enrolled in the study. Metabolic and transcriptomic alterations differentiating patients with ASD-Phen1 were consistent with an over-activation of NF-κB and NRF2 transcription factors, as predicted by DEPI. Finally, the suitability of STP1 combination treatment to revert such observed molecular alterations in patients with ASD-Phen1 was determined. Overall, our results support the development of precision medicine-based treatments for patients diagnosed with ASD.

5.
Drug Discov Today ; 28(3): 103486, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36623795

RESUMO

Autism spectrum disorder (ASD) is a heterogenous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. Currently, ASD is diagnosed according to behavior-based criteria that overlook clinical and genomic heterogeneity, thus repeatedly resulting in failed clinical trials. Here, we summarize the scientific evidence pointing to the pressing need to create a precision medicine framework for ASD and other NDDs. We discuss the role of omics and systems biology to characterize more homogeneous disease subtypes with different underlying pathophysiological mechanisms and to determine corresponding tailored treatments. Finally, we provide recent initiatives towards tackling the complexity in NDDs for precision medicine and cost-effective drug discovery.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Medicina de Precisão , Genômica , Genoma
6.
Front Psychiatry ; 12: 722378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658958

RESUMO

Fragile X syndrome (FXS) is the most frequent monogenic cause of autism or intellectual disability, and research on its pathogenetic mechanisms has provided important insights on this neurodevelopmental condition. Nevertheless, after 30 years of intense research, efforts to develop treatments have been mostly unsuccessful. The aim of this review is to compile evidence from existing research pointing to clinical, genetic, and therapeutic response heterogeneity in FXS and highlight the need of implementing precision medicine-based treatments. We comment on the high genetic and phenotypic heterogeneity present in FXS, as a contributing factor to the difficulties found during drug development. Given that several clinical trials have showed a non-negligeable fraction of positive responders to drugs targeting core FXS symptoms, we propose that success of clinical trials can be achieved by tackling the underlying heterogeneity in FXS by accurately stratifying patients into drug-responder subpopulations. These precision medicine-based approaches, which can be first applied to well-defined monogenic diseases such as FXS, can also serve to define drug responder profiles based on specific biomarkers or phenotypic features that can associate patients with different genetic backgrounds to a same candidate drug, thus repositioning a same drug for a larger number of patients with NDDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA