Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ophthalmol Retina ; 7(2): 118-126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35995411

RESUMO

OBJECTIVE: To assess and validate a deep learning algorithm to automatically detect incomplete retinal pigment epithelial and outer retinal atrophy (iRORA) and complete retinal pigment epithelial and outer retinal atrophy (cRORA) in eyes with age-related macular degeneration. DESIGN: In a retrospective machine learning analysis, a deep learning model was trained to jointly classify the presence of iRORA and cRORA within a given B-scan. The algorithm was evaluated using 2 separate and independent datasets. PARTICIPANTS: OCT B-scan volumes from 71 patients with nonneovascular age-related macular degeneration captured at the Doheny-University of California Los Angeles Eye Centers and the following 2 external OCT B-scans testing datasets: (1) University of Pennsylvania, University of Miami, and Case Western Reserve University and (2) Doheny Image Reading Research Laboratory. METHODS: The images were annotated by an experienced grader for the presence of iRORA and cRORA. A Resnet18 model was trained to classify these annotations for each B-scan using OCT volumes collected at the Doheny-University of California Los Angeles Eye Centers. The model was applied to 2 testing datasets to assess out-of-sample model performance. MAIN OUTCOMES MEASURES: Model performance was quantified in terms of area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). Sensitivity, specificity, and positive predictive value were also compared against additional clinician annotators. RESULTS: On an independently collected test set, consisting of 1117 volumes from the general population, the model predicted iRORA and cRORA presence within the entire volume with nearly perfect AUROC performance and AUPRC scores (iRORA, 0.61; 95% confidence interval [CI] [0.45, 0.82]: cRORA, 0.83; 95% CI [0.68, 0.95]). On another independently collected set, consisting of 60 OCT B-scans enriched for iRORA and cRORA lesions, the model performed with AUROC (iRORA: 0.68, 95% CI [0.54, 0.81]; cRORA: 0.84, 95% CI [0.75, 0.94]) and AUPRC (iRORA: 0.70, 95% CI [0.55, 0.86]; cRORA: 0.82, 95% CI [0.70, 0.93]). CONCLUSIONS: A deep learning model can accurately and precisely identify both iRORA and cRORA lesions within the OCT B-scan volume. The model can achieve similar sensitivity compared with human graders, which potentially obviates a laborious and time-consuming annotation process and could be developed into a diagnostic screening tool.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Estudos Retrospectivos , Degeneração Retiniana/patologia , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/patologia , Aprendizado de Máquina , Atrofia
2.
Res Sq ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045283

RESUMO

We present SLIViT, a deep-learning framework that accurately measures disease-related risk factors in volumetric biomedical imaging, such as magnetic resonance imaging (MRI) scans, optical coherence tomography (OCT) scans, and ultrasound videos. To evaluate SLIViT, we applied it to five different datasets of these three different data modalities tackling seven learning tasks (including both classification and regression) and found that it consistently and significantly outperforms domain-specific state-of-the-art models, typically improving performance (ROC AUC or correlation) by 0.1-0.4. Notably, compared to existing approaches, SLIViT can be applied even when only a small number of annotated training samples is available, which is often a constraint in medical applications. When trained on less than 700 annotated volumes, SLIViT obtained accuracy comparable to trained clinical specialists while reducing annotation time by a factor of 5,000 demonstrating its utility to automate and expedite ongoing research and other practical clinical scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA