Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Microbiol ; 56(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29237788

RESUMO

Multistep algorithmic testing in which a sensitive nucleic acid amplification test (NAAT) is followed by a specific toxin A and toxin B enzyme immunoassay (EIA) is among the most accurate methods for Clostridium difficile infection (CDI) diagnosis. The obvious shortcoming of this approach is that multiple tests must be performed to establish a CDI diagnosis, which may delay treatment. Therefore, we sought to determine whether a preliminary diagnosis could be made on the basis of the quantitative results of the first test in algorithmic testing, which provide a measure of organism burden. To do so, we retrospectively analyzed two large collections of samples (n = 2,669 and n = 1,718) that were submitted to the laboratories of two Dutch hospitals for CDI testing. Both hospitals apply a two-step testing algorithm in which a NAAT is followed by a toxin A/B EIA. Of all samples, 208 and 113 samples, respectively, tested positive by NAAT. Among these NAAT-positive samples, significantly lower mean quantification cycle (Cq ) values were found for patients whose stool eventually tested positive for toxin, compared with patients who tested negative for toxin (mean Cq values of 24.4 versus 30.4 and 26.8 versus 32.2; P < 0.001 for both cohorts). Receiver operating characteristic curve analysis was performed to investigate the ability of Cq values to predict toxin status and yielded areas under the curve of 0.826 and 0.854. Using the optimal Cq cutoff values, prediction of the eventual toxin A/B EIA results was accurate for 78.9% and 80.5% of samples, respectively. In conclusion, Cq values can serve as predictors of toxin status but, due to the suboptimal correlation between the two tests, additional toxin testing is still needed.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/análise , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/diagnóstico , Enterotoxinas/análise , Técnicas Imunoenzimáticas/normas , Técnicas de Amplificação de Ácido Nucleico/normas , Algoritmos , Proteínas de Bactérias/análise , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Testes Diagnósticos de Rotina , Fezes/química , Hospitais , Humanos , Países Baixos , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos
2.
Biomater Sci ; 9(5): 1683-1690, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33410436

RESUMO

AIM: Pre-targeting is a proven strategy for in vivo delivery of a diagnostic or therapeutic payload. The pre-targeting concept can be realized through various conjugation strategies, one of which is based on copper-free "click" chemistry. Copper-free click reactions have shown in vivo potential for imaging and radionuclide therapy, but this conjugation strategy has not yet been explored in combination with microspheres or unicellular organisms. This study aims to evaluate the in vivo efficacy of strain-promoted azide-alkyne cycloaddition (SPAAC) reactions to achieve imaging and targeting of azide-functionalized macro-aggregated albumin (MAA) microspheres and Staphylococcus aureus bacteria. METHODS: MAA microspheres (diameter 10-90 µm) were functionalized with a biorthogonal Cy5 fluorophore, bearing an azide functionality (N3), to generate MAA-Cy5-N3. S. aureus (diameter ∼1 µm) were functionalized with 99mTc-UBI29-41-Cy5-N3, generating S. aureus-99mTc-UBI29-41-Cy5-N3. In situ and in vitro click conjugation on the -N3 moieties was studied for 20 h using a radioactivity-based assay and fluorescence microscopy. For in vivo validation, both primary entities, radiolabeled with 99mTc, were deposited into the microvasculature of the liver via intrasplenic injections. Secondary targeting was realized following the intravenous administration of indium-111-radiolabeled diethylenetriaminepentaacetic acid-dibenzocyclooctyne (111In-DTPA-DBCO). To assess click reaction efficiency in vivo, 99mTc and 111In-biodistributions were measured (SPECT and %ID g-1). Use of 111In-DTPA-DBCO in mice without MAA deposits or mice infected with non-functionalized S. aureus served as controls. Ex vivo confocal fluorescence imaging was carried out in excised tissues to confirm the presence of functionalized MAA and bacteria. RESULTS: In vitro data confirmed effective click reactions on both the MAA particles and the bacterial membrane. SPECT imaging and biodistribution studies revealed significantly (p < 0.05) increased accumulation of 111In-DTPA-DBCO at the sites where MAA-Cy5-N3 (7.5 ± 1.5%ID g-1vs. 3.5 ± 0.5%ID g-1 in control mice) and S. aureus-99mTc-UBI29-41-Cy5-N3 (9.3 ± 1.3%ID g-1vs. 6.0 ± 0.5%ID g-1 in control mice) resided. Ex vivo fluorescence imaging confirmed the presence of either functionalized MAA or S. aureus in excised spleens and livers of mice. CONCLUSION: Copper-free click chemistry between a DBCO moiety and Cy5-N3-functionalized microspheres or bacterial entities in the liver can be used to realize in vivo imaging and targeting.


Assuntos
Química Click , Medicina Nuclear , Animais , Camundongos , Microesferas , Staphylococcus aureus , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA