Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Virol ; 97(5): e0003023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37092993

RESUMO

Human metapneumovirus (HMPV) is a negative-strand RNA virus that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. A hallmark of HMPV infection is the formation of membraneless, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). The HMPV phosphoprotein (P) and nucleoprotein (N) are the minimal viral proteins necessary to form IB-like structures, and both proteins are required for the viral polymerase to synthesize RNA during infection. HMPV P is a homotetramer with regions of intrinsic disorder and has several known and predicted phosphorylation sites of unknown function. In this study, we found that the P C-terminal intrinsically disordered domain (CTD) must be present to facilitate IB formation with HMPV N, while either the N-terminal intrinsically disordered domain or the central oligomerization domain was dispensable. Alanine substitution at a single tyrosine residue within the CTD abrogated IB formation and reduced coimmunoprecipitation with HMPV N. Mutations to C-terminal phosphorylation sites revealed a potential role for phosphorylation in regulating RNA synthesis and P binding partners within IBs. Phosphorylation mutations which reduced RNA synthesis in a reporter assay produced comparable results in a recombinant viral rescue system, measured as an inability to produce infectious viral particles with genomes containing these single P mutations. This work highlights the critical role HMPV P plays in facilitating a key step of the viral life cycle and reveals the potential role for phosphorylation in regulating the function of this significant viral protein. IMPORTANCE Human metapneumovirus (HMPV) infects global populations, with severe respiratory tract infections occurring in infants, the elderly, and the immunocompromised. There are currently no FDA-approved therapeutics available to prevent or treat HMPV infection. Therefore, understanding how HMPV replicates is vital for the identification of novel targets for therapeutic development. During HMPV infection, viral RNA synthesis proteins localize to membraneless structures called inclusion bodies (IBs), which are sites of genome replication and transcription. The HMPV phosphoprotein (P) is necessary for IBs to form and for the virus to synthesize RNA, but it is not known how this protein contributes to IB formation or if it is capable of regulating viral replication. We show that the C-terminal domain of P is the location of a molecular interaction driving IB formation and contains potential phosphorylation sites where amino acid charge regulates the function of the viral polymerase complex.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Idoso , Humanos , Linhagem Celular , Metapneumovirus/fisiologia , Nucleotidiltransferases , Infecções por Paramyxoviridae/virologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Infecções Respiratórias , RNA , Proteínas Virais/genética , Proteínas Virais/metabolismo , Compartimentos de Replicação Viral/metabolismo , Replicação Viral , Corpos de Inclusão Viral/metabolismo
2.
J Virol ; 97(2): e0008923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700640

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
Pesquisa , Virologia , Viroses , Humanos , COVID-19/prevenção & controle , Disseminação de Informação , Pandemias/prevenção & controle , Formulação de Políticas , Pesquisa/normas , Pesquisa/tendências , SARS-CoV-2 , Virologia/normas , Virologia/tendências , Viroses/prevenção & controle , Viroses/virologia , Vírus
3.
J Infect Dis ; 228(Suppl 6): S390-S397, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849400

RESUMO

The Paramyxoviridae family includes established human pathogens such as measles virus, mumps virus, and the human parainfluenza viruses; highly lethal zoonotic pathogens such as Nipah virus; and a number of recently identified agents, such as Sosuga virus, which remain poorly understood. The high human-to-human transmission rate of paramyxoviruses such as measles virus, high case fatality rate associated with other family members such as Nipah virus, and the existence of poorly characterized zoonotic pathogens raise concern that known and unknown paramyxoviruses have significant pandemic potential. In this review, the general life cycle, taxonomic relationships, and viral pathogenesis are described for paramyxoviruses that cause both systemic and respiratory system-restricted infections. Next, key gaps in critical areas are presented, following detailed conversations with subject matter experts and based on the current literature. Finally, we present an assessment of potential prototype pathogen candidates that could be used as models to study this important virus family, including assessment of the strengths and weaknesses of each potential prototype.


Assuntos
Vírus Nipah , Vacinas , Humanos , Pandemias , Paramyxoviridae , Antivirais/uso terapêutico
4.
J Biol Chem ; 297(1): 100902, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34157282

RESUMO

The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2-infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell-cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell-cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell-cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell-cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell-cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.


Assuntos
COVID-19/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Humanos , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Ligação Viral , Internalização do Vírus
5.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32759319

RESUMO

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are two of the leading causes of respiratory infections in children and elderly and immunocompromised patients worldwide. There is no approved treatment for HMPV and only one prophylactic treatment against RSV, palivizumab, for high-risk infants. Better understanding of the viral lifecycles in a more relevant model system may help identify novel therapeutic targets. By utilizing three-dimensional (3-D) human airway tissues to examine viral infection in a physiologically relevant model system, we showed that RSV infects and spreads more efficiently than HMPV, with the latter requiring higher multiplicities of infection (MOIs) to yield similar levels of infection. Apical ciliated cells were the target for both viruses, but RSV apical release was significantly more efficient than HMPV. In RSV- or HMPV-infected cells, cytosolic inclusion bodies containing the nucleoprotein, phosphoprotein, and respective viral genomic RNA were clearly observed in human airway epithelial (HAE) culture. In HMPV-infected cells, actin-based filamentous extensions were more common (35.8%) than those found in RSV-infected cells (4.4%). Interestingly, neither RSV nor HMPV formed syncytia in HAE tissues. Palivizumab and nirsevimab effectively inhibited entry and spread of RSV in HAE tissues, with nirsevimab displaying significantly higher potency than palivizumab. In contrast, 54G10 completely inhibited HMPV entry but only modestly reduced viral spread, suggesting HMPV may use alternative mechanisms for spread. These results represent the first comparative analysis of infection by the two pneumoviruses in a physiologically relevant model, demonstrating an interesting dichotomy in the mechanisms of infection, spread, and consequent inhibition of the viral lifecycles by neutralizing monoclonal antibodies.IMPORTANCE Respiratory syncytial virus and human metapneumovirus are leading causes of respiratory illness worldwide, but limited treatment options are available. To better target these viruses, we examined key aspects of the viral life cycle in three-dimensional (3-D) human airway tissues. Both viruses establish efficient infection through the apical surface, but efficient spread and apical release were seen for respiratory syncytial virus (RSV) but not human metapneumovirus (HMPV). Both viruses form inclusion bodies, minimally composed of nucleoprotein (N), phosphoprotein (P), and viral RNA (vRNA), indicating that these structures are critical for replication in this more physiological model. HMPV formed significantly more long, filamentous actin-based extensions in human airway epithelial (HAE) tissues than RSV, suggesting HMPV may promote cell-to-cell spread via these extensions. Lastly, RSV entry and spread were fully inhibited by neutralizing antibodies palivizumab and the novel nirsevimab. In contrast, while HMPV entry was fully inhibited by 54G10, a neutralizing antibody, spread was only modestly reduced, further supporting a cell-to-cell spread mechanism.


Assuntos
Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Metapneumovirus/fisiologia , Mucosa Respiratória , Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios/fisiologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Humanos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/transmissão
6.
J Gen Virol ; 101(5): 467-472, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32100701

RESUMO

The paramyxoviruses Hendra virus (HeV) and parainfluenza virus 5 (PIV5) require the fusion (F) protein to efficiently infect cells. For fusion to occur, F undergoes dramatic, essentially irreversible conformational changes to merge the viral and cell membranes into a continuous bilayer. Recently, a transmembrane (TM) domain leucine/isoleucine (L/I) zipper was shown to be critical in maintaining the expression, stability and pre-fusion conformation of HeV F, allowing for fine-tuned timing of membrane fusion. To analyse the effect of the TM domain L/I zipper in another paramyxovirus, we created alanine mutations to the TM domain of PIV5 F, a paramyxovirus model system. Our data show that while the PIV5 F TM L/I zipper does not significantly affect total expression and only modestly affects surface expression and pre-fusion stability, it is critical for fusogenic activity. These results suggest that the roles of TM L/I zipper motifs differ among members of the family Paramyxoviridae.


Assuntos
Membrana Celular/genética , Isoleucina/genética , Leucina/genética , Mutação/genética , Vírus da Parainfluenza 5/genética , Domínios Proteicos/genética , Proteínas Virais de Fusão/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Fusão de Membrana/genética , Paramyxovirinae/genética , Células Vero
7.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462574

RESUMO

Hendra virus (HeV) is a zoonotic paramyxovirus that utilizes a trimeric fusion (F) protein within its lipid bilayer to mediate membrane merger with a cell membrane for entry. Previous HeV F studies showed that transmembrane domain (TMD) interactions are important for stabilizing the prefusion conformation of the protein prior to triggering. Thus, the current model for HeV F fusion suggests that modulation of TMD interactions is critical for initiation and completion of conformational changes that drive membrane fusion. HeV F constructs (T483C/V484C, V484C/N485C, and N485C/P486C) were generated with double cysteine substitutions near the N-terminal region of the TMD to study the effect of altered flexibility in this region. Oligomeric analysis showed that the double cysteine substitutions successfully promoted intersubunit disulfide bond formation in HeV F. Subsequent fusion assays indicated that the introduction of disulfide bonds in the mutants prohibited fusion events. Further testing confirmed that T483C/V484C and V484C/N485C were expressed at the cell surface at levels that would allow for fusion. Attempts to restore fusion with a reducing agent were unsuccessful, suggesting that the introduced disulfide bonds were likely buried in the membrane. Conformational analysis showed that T483C/V484C and V484C/N485C were able to bind a prefusion conformation-specific antibody prior to cell disruption, indicating that the introduced disulfide bonds did not significantly affect protein folding. This study is the first to report that TMD dissociation is required for HeV F fusogenic activity and strengthens our model for HeV fusion.IMPORTANCE The paramyxovirus Hendra virus (HeV) causes severe respiratory illness and encephalitis in humans. To develop therapeutics for HeV and related viral infections, further studies are needed to understand the mechanisms underlying paramyxovirus fusion events. Knowledge gained in studies of the HeV fusion (F) protein may be applicable to a broad span of enveloped viruses. In this study, we demonstrate that disulfide bonds introduced between the HeV F transmembrane domains (TMDs) block fusion. Depending on the location of these disulfide bonds, HeV F can still fold properly and bind a prefusion conformation-specific antibody prior to cell disruption. These findings support our current model for HeV membrane fusion and expand our knowledge of the TMD and its role in HeV F stability and fusion promotion.


Assuntos
Vírus Hendra/metabolismo , Infecções por Henipavirus/metabolismo , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus Hendra/genética , Humanos , Fusão de Membrana/fisiologia , Paramyxovirinae/metabolismo , Domínios Proteicos/genética , Dobramento de Proteína , Células Vero , Proteínas Virais de Fusão/genética , Internalização do Vírus
8.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31217248

RESUMO

Enveloped viruses utilize surface glycoproteins to bind and fuse with a target cell membrane. The zoonotic Hendra virus (HeV), a member of the family Paramyxoviridae, utilizes the attachment protein (G) and the fusion protein (F) to perform these critical functions. Upon triggering, the trimeric F protein undergoes a large, irreversible conformation change to drive membrane fusion. Previously, we have shown that the transmembrane (TM) domain of the F protein, separate from the rest of the protein, is present in a monomer-trimer equilibrium. This TM-TM association contributes to the stability of the prefusion form of the protein, supporting a role for TM-TM interactions in the control of F protein conformational changes. To determine the impact of disrupting TM-TM interactions, constructs expressing the HeV F TM with limited flanking sequences were synthesized. Coexpression of these constructs with HeV F resulted in dramatic reductions in the stability of F protein expression and fusion activity. In contrast, no effects were observed when the HeV F TM constructs were coexpressed with the nonhomologous parainfluenza virus 5 (PIV5) fusion protein, indicating a requirement for specific interactions. To further examine this, a TM peptide homologous to the PIV5 F TM domain was synthesized. Addition of the peptide prior to infection inhibited infection with PIV5 but did not significantly affect infection with human metapneumovirus, a related virus. These results indicate that targeted disruption of TM-TM interactions significantly impact viral fusion protein stability and function, presenting these interactions as a novel target for antiviral development.IMPORTANCE Enveloped viruses require virus-cell membrane fusion to release the viral genome and replicate. The viral fusion protein triggers from the pre- to the postfusion conformation, an essentially irreversible change, to drive membrane fusion. We found that small proteins containing the TM and a limited flanking region homologous to the fusion protein of the zoonotic Hendra virus reduced protein expression and fusion activity. The introduction of exogenous TM peptides may displace a TM domain, disrupting native TM-TM interactions and globally destabilizing the fusion protein. Supporting this hypothesis, we showed that a sequence-specific transmembrane peptide dramatically reduced viral infection in another enveloped virus model, suggesting a broader inhibitory mechanism. Viral fusion protein TM-TM interactions are important for protein function, and disruption of these interactions dramatically reduces protein stability.


Assuntos
Paramyxovirinae/metabolismo , Peptídeos/farmacologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Chlorocebus aethiops , Vírus Hendra/química , Vírus Hendra/genética , Vírus Hendra/metabolismo , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Vírus da Parainfluenza 5/química , Vírus da Parainfluenza 5/genética , Vírus da Parainfluenza 5/metabolismo , Paramyxovirinae/química , Paramyxovirinae/genética , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Estabilidade Proteica , Células Vero , Proteínas Virais de Fusão/efeitos dos fármacos
9.
J Biol Chem ; 292(14): 5685-5694, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28213515

RESUMO

Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of ß-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.


Assuntos
Vírus Hendra/química , Proteínas do Core Viral/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Vírus Hendra/genética , Vírus Hendra/metabolismo , Mutação de Sentido Incorreto , Domínios Proteicos , Relação Estrutura-Atividade , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
10.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978704

RESUMO

Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications.IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets.


Assuntos
Replicação do DNA , Células Epiteliais/virologia , Genoma Viral , Corpos de Inclusão Viral/fisiologia , Metapneumovirus/genética , Metapneumovirus/fisiologia , Brônquios/citologia , Brônquios/virologia , Linhagem Celular , Citoplasma/virologia , Células Epiteliais/citologia , Humanos , Hibridização in Situ Fluorescente , RNA Viral , Análise Espaço-Temporal , Proteínas Virais/metabolismo , Replicação Viral
11.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468881

RESUMO

Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking led to failure of F to function with M for VLP assembly. Wild-type F functioned normally for VLP assembly even when its cleavage was prevented with a cathepsin inhibitor, indicating that it is endocytic F trafficking that is important for VLP assembly, not proteolytic F cleavage. Under specific conditions of reduced M expression, we found that M could no longer induce significant VLP release but retained the ability to be incorporated as a passenger into F-driven VLPs, provided that the F protein was competent for endocytic trafficking. The F and M proteins were both found to traffic through Rab11-positive recycling endosomes (REs), suggesting a model in which F and M trafficking pathways converge at REs, enabling these proteins to preassemble before arriving at plasma membrane budding sites.IMPORTANCE Hendra virus and Nipah virus are zoonotic paramyxoviruses that cause lethal infections in humans. Unlike that for most paramyxoviruses, activation of the henipavirus fusion protein occurs in recycling endosomal compartments. In this study, we demonstrate that the unique endocytic trafficking pathway of Hendra virus F protein is required for proper viral assembly and particle release. These results advance our basic understanding of the henipavirus assembly process and provide a novel model for the interplay between glycoprotein trafficking and paramyxovirus assembly.


Assuntos
Vírus Hendra/genética , Multimerização Proteica , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Virossomos/metabolismo , Linhagem Celular , Endossomos/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Transporte Proteico , Proteínas da Matriz Viral/metabolismo , Virossomos/genética
12.
PLoS Pathog ; 12(9): e1005922, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27683250

RESUMO

Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses.

13.
J Virol ; 90(20): 9237-50, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489270

RESUMO

UNLABELLED: Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of variably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5 polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide dendrimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for potential antiviral development. IMPORTANCE: Human metapneumovirus (HMPV) is a paramyxovirus that causes respiratory disease worldwide. It has been previously shown that HMPV requires binding to heparan sulfate on the surfaces of target cells for attachment and infection. In this study, we characterize the key features of this binding interaction using heparan sulfate mimetics, identify an important sulfate modification, and demonstrate that these interactions occur at the apical surface of polarized airway tissues. These findings provide insights into the initial binding step of HMPV infection that has potential for antiviral development.


Assuntos
Antivirais/farmacologia , Heparitina Sulfato/metabolismo , Metapneumovirus/efeitos dos fármacos , Infecções por Paramyxoviridae/tratamento farmacológico , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Células A549 , Cápsulas Bacterianas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dendrímeros/metabolismo , Dendrímeros/farmacologia , Escherichia coli/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Peptídeos/farmacologia , Proteínas Virais de Fusão/metabolismo
14.
Biochemistry ; 55(16): 2301-4, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27078234

RESUMO

ATP-dependent degradation plays a critical role in the quality control and recycling of proteins in cells. However, complete degradation of membrane proteins by ATP-dependent proteases in bacteria is not well-studied. We discovered that the degradation of a multidomain and multispan integral membrane protein AcrB could be facilitated by the introduction of a ssrA-tag at the C-terminus of the protein sequence and demonstrated that the cytoplasmic unfoldase-protease complex ClpXP was involved in the degradation. This is the first report to our knowledge to reveal that the ClpXP complex is capable of degrading integral membrane proteins. The chaperone SspB also played a role in the degradation. Using purified proteins, we demonstrated that the addition of the ssrA-tag did not drastically affect the structure of AcrB, and the degradation of detergent solubilized AcrB by purified ClpXP could be observed in vitro.


Assuntos
Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sequência de Aminoácidos , Escherichia coli/química , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Conformação Proteica , Proteólise
15.
Anal Bioanal Chem ; 408(27): 7745-7751, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27549795

RESUMO

Proteins are constantly synthesized and degraded in living cells during their growth and division, often in response to metabolic and environmental conditions. The synthesis and breakdown of proteins under different conditions reveal information about their mechanism of function. The metabolic incorporation of non-natural amino acid azidohomoalanine (AHA) and subsequent labeling via click chemistry emerged as a non-radioactive strategy useful in the determination of protein kinetics and turnover. We used the method to monitor the degradation of two proteins involved in the multidrug efflux in Escherichia coli, the inner membrane transporter AcrB and its functional partner membrane fusion protein AcrA. Together they form a functional complex with an outer membrane channel TolC to actively transport various small molecule compounds out of E. coli cells. We found that both AcrA and AcrB lasted for approximately 6 days in live E. coli cells, and the stability of AcrB depended on the presence of AcrA but not on active efflux. These results lead to new insight into the multidrug resistance in Gram-negative bacteria conferred by efflux.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Coloração e Rotulagem/métodos , Alanina/análogos & derivados , Alanina/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Química Click/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/deficiência , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Ligação Proteica , Estabilidade Proteica , Proteólise , Radioisótopos de Enxofre
16.
J Virol ; 88(11): 6423-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24672047

RESUMO

UNLABELLED: Human metapneumovirus (HMPV) encodes three glycoproteins: the glycoprotein, which plays a role in glycosaminoglycan binding, the fusion (F) protein, which is necessary and sufficient for both viral binding to the target cell and fusion between the cellular plasma membrane and the viral membrane, and the small hydrophobic (SH) protein, whose function is unclear. The SH protein of the closely related respiratory syncytial virus has been suggested to function as a viroporin, as it forms oligomeric structures consistent with a pore and alters membrane permeability. Our analysis indicates that both the full-length HMPV SH protein and the isolated SH protein transmembrane domain can associate into higher-order oligomers. In addition, HMPV SH expression resulted in increases in permeability to hygromycin B and alteration of subcellular localization of a fluorescent dye, indicating that SH affects membrane permeability. These results suggest that the HMPV SH protein has several characteristics consistent with a putative viroporin. Interestingly, we also report that expression of the HMPV SH protein can significantly decrease HMPV F protein-promoted membrane fusion activity, with the SH extracellular domain and transmembrane domain playing a key role in this inhibition. These results suggest that the HMPV SH protein could regulate both membrane permeability and fusion protein function during viral infection. IMPORTANCE: Human metapneumovirus (HMPV), first identified in 2001, is a causative agent of severe respiratory tract disease worldwide. The small hydrophobic (SH) protein is one of three glycoproteins encoded by all strains of HMPV, but the function of the HMPV SH protein is unknown. We have determined that the HMPV SH protein can alter the permeability of cellular membranes, suggesting that HMPV SH is a member of a class of proteins termed viroporins, which modulate membrane permeability to facilitate critical steps in a viral life cycle. We also demonstrated that HMPV SH can inhibit the membrane fusion function of the HMPV fusion protein. This work suggests that the HMPV SH protein has several functions, though the steps in the HMPV life cycle impacted by these functions remain to be clarified.


Assuntos
Membrana Celular/metabolismo , Metapneumovirus/genética , Proteínas Oncogênicas de Retroviridae/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células Gigantes/fisiologia , Células Gigantes/virologia , Humanos , Higromicina B , Microscopia Confocal , Permeabilidade , Plasmídeos/genética , Proteínas Oncogênicas de Retroviridae/genética , Ultracentrifugação , Células Vero , Proteínas Virais Reguladoras e Acessórias/genética , Internalização do Vírus
18.
J Biol Chem ; 288(50): 35726-35, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24178297

RESUMO

Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.


Assuntos
Membrana Celular/metabolismo , Dobramento de Proteína , Multimerização Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/virologia , Chlorocebus aethiops , Fusão de Membrana , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Células Vero
19.
J Biol Chem ; 287(35): 30035-48, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22761418

RESUMO

Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.


Assuntos
Fusão de Membrana , Paramyxoviridae , Proteínas Virais de Fusão , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Dicroísmo Circular , Mutação de Sentido Incorreto , Paramyxoviridae/química , Paramyxoviridae/genética , Paramyxoviridae/metabolismo , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
20.
J Virol ; 86(6): 3230-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22238303

RESUMO

Human metapneumovirus (HMPV) is a major worldwide respiratory pathogen that causes acute upper and lower respiratory tract disease. The mechanism by which this virus recognizes and gains access to its target cell is still largely unknown. In this study, we addressed the initial steps in virus binding and infection and found that the first binding partner for HMPV is heparan sulfate (HS). While wild-type CHO-K1 cells are permissive to HMPV infection, mutant cell lines lacking the ability to synthesize glycosaminoglycans (GAGs), specifically, heparan sulfate proteoglycans (HSPGs), were resistant to binding and infection by HMPV. The permissiveness to HMPV infection was also abolished when CHO-K1 cells were treated with heparinases. Importantly, using recombinant HMPV lacking both the G and small hydrophobic (SH) proteins, we report that this first virus-cell binding interaction is driven primarily by the fusion protein (HMPV F) and that this interaction is needed to establish a productive infection. Finally, HMPV binding to cells did not require ß1 integrin expression, and RGD-mediated interactions were not essential in promoting HMPV F-mediated cell-to-cell membrane fusion. Cells lacking ß1 integrin, however, were less permissive to HMPV infection, indicating that while ß1 integrins play an important role in promoting HMPV infection, the interaction between integrins and HMPV occurs after the initial binding of HMPV F to heparan sulfate proteoglycans.


Assuntos
Heparitina Sulfato/metabolismo , Metapneumovirus/metabolismo , Infecções por Paramyxoviridae/metabolismo , Receptores Virais/metabolismo , Proteínas Virais de Fusão/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Humanos , Metapneumovirus/química , Metapneumovirus/genética , Infecções por Paramyxoviridae/virologia , Ligação Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA