Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 129(12): 1903-1914, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37875732

RESUMO

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer, arising from resistance to androgen-deprivation therapies. However, the molecular mechanisms associated with NEPC development and invasiveness are still poorly understood. Here we investigated the expression and functional significance of Fascin-1 (FSCN1), a pro-metastasis actin-bundling protein associated with poor prognosis of several cancers, in neuroendocrine differentiation of prostate cancer. METHODS: Differential expression analyses using Genome Expression Omnibus (GEO) database, clinical samples and cell lines were performed. Androgen or antagonist's cellular treatments and knockdown experiments were used to detect changes in cell morphology, molecular markers, migration properties and in vivo tumour growth. Chromatin immunoprecipitation-sequencing (ChIP-Seq) data and ChIP assays were analysed to decipher androgen receptor (AR) binding. RESULTS: We demonstrated that FSCN1 is upregulated during neuroendocrine differentiation of prostate cancer in vitro, leading to phenotypic changes and NEPC marker expression. In human prostate cancer samples, FSCN1 expression is restricted to NEPC tumours. We showed that the androgen-activated AR downregulates FSCN1 expression and works as a transcriptional repressor to directly suppress FSCN1 expression. AR antagonists alleviate this repression. In addition, FSCN1 silencing further impairs in vivo tumour growth. CONCLUSION: Collectively, our findings identify FSCN1 as an AR-repressed gene. Particularly, it is involved in NEPC aggressiveness. Our results provide the rationale for the future clinical development of FSCN1 inhibitors in NEPC patients.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Humanos , Masculino , Antagonistas de Androgênios/uso terapêutico , Androgênios , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia
2.
Nucleic Acids Res ; 41(1): 125-38, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23093599

RESUMO

Direct modulation of gene expression by targeting oncogenic transcription factors is a new area of research for cancer treatment. ERG, an ETS-family transcription factor, is commonly over-expressed or translocated in leukaemia and prostate carcinoma. In this work, we selected the di-(thiophene-phenyl-amidine) compound DB1255 as an ERG/DNA binding inhibitor using a screening test of synthetic inhibitors of the ERG/DNA interaction followed by electrophoretic mobility shift assays (EMSA) validation. Spectrometry, footprint and biosensor-surface plasmon resonance analyses of the DB1255/DNA interaction evidenced sequence selectivity and groove binding as dimer. Additional EMSA evidenced the precise DNA-binding sequence required for optimal DB1255/DNA binding and thus for an efficient ERG/DNA complex inhibition. We further highlighted the structure activity relationships from comparison with derivatives. In cellulo luciferase assay confirmed this modulation both with the constructed optimal sequences and the Osteopontin promoter known to be regulated by ERG and which ERG-binding site was protected from DNaseI digestion on binding of DB1255. These data showed for the first time the ERG/DNA complex modulation, both in vitro and in cells, by a heterocyclic diamidine that specifically targets a portion of the ERG DNA recognition site.


Assuntos
Amidinas/farmacologia , Antineoplásicos/farmacologia , Tiofenos/farmacologia , Transativadores/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos , Amidinas/química , Amidinas/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Tiofenos/química , Tiofenos/metabolismo , Transativadores/metabolismo , Regulador Transcricional ERG
3.
Cell Death Dis ; 14(2): 75, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725844

RESUMO

Coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)) is primarily a respiratory illness. However, various extrapulmonary manifestations have been reported in patients with severe forms of COVID-19. Notably, SARS-CoV-2 was shown to directly trigger white adipose tissue (WAT) dysfunction, which in turn drives insulin resistance, dyslipidemia, and other adverse outcomes in patients with COVID-19. Although advanced age is the greatest risk factor for COVID-19 severity, published data on the impact of SARS-CoV-2 infection on WAT in aged individuals are scarce. Here, we characterized the response of subcutaneous and visceral WAT depots to SARS-CoV-2 infection in young adult and aged golden hamsters. In both age groups, infection was associated with a decrease in adipocyte size in the two WAT depots; this effect was partly due to changes in tissue's lipid metabolism and persisted for longer in aged hamsters than in young-adult hamsters. In contrast, only the subcutaneous WAT depot contained crown-like structures (CLSs) in which dead adipocytes were surrounded by SARS-CoV-2-infected macrophages, some of them forming syncytial multinucleated cells. Importantly, older age predisposed to a unique manifestation of viral disease in the subcutaneous WAT depot during SARS-CoV-2 infection; the persistence of very large CLSs was indicative of an age-associated defect in the clearance of dead adipocytes by macrophages. Moreover, we uncovered age-related differences in plasma lipid profiles during SARS-CoV-2 infection. These data suggest that the WAT's abnormal response to SARS-CoV-2 infection may contribute to the greater severity of COVID-19 observed in elderly patients.


Assuntos
Tecido Adiposo Branco , COVID-19 , Animais , Cricetinae , Tecido Adiposo Branco/patologia , COVID-19/patologia , Modelos Animais de Doenças , Mesocricetus , SARS-CoV-2
4.
Nat Aging ; 3(7): 829-845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414987

RESUMO

Older age is one of the strongest risk factors for severe COVID-19. In this study, we determined whether age-associated cellular senescence contributes to the severity of experimental COVID-19. Aged golden hamsters accumulate senescent cells in the lungs, and the senolytic drug ABT-263, a BCL-2 inhibitor, depletes these cells at baseline and during SARS-CoV-2 infection. Relative to young hamsters, aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Early treatment with ABT-263 lowered pulmonary viral load in aged (but not young) animals, an effect associated with lower expression of ACE2, the receptor for SARS-CoV-2. ABT-263 treatment also led to lower pulmonary and systemic levels of senescence-associated secretory phenotype factors and to amelioration of early and late lung disease. These data demonstrate the causative role of age-associated pre-existing senescent cells on COVID-19 severity and have clear clinical relevance.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Carga Viral , Pulmão , Mesocricetus , Inflamação , Senescência Celular
5.
Gut Microbes ; 14(1): 2018900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965194

RESUMO

Mounting evidence suggests that the gut-to-lung axis is critical during respiratory viral infections. We herein hypothesized that disruption of gut homeostasis during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may associate with early disease outcomes. To address this question, we took advantage of the Syrian hamster model. Our data confirmed that this model recapitulates some hallmark features of the human disease in the lungs. We further showed that SARS-CoV-2 infection associated with mild intestinal inflammation, relative alteration in intestinal barrier property and liver inflammation and altered lipid metabolism. These changes occurred concomitantly with an alteration of the gut microbiota composition over the course of infection, notably characterized by a higher relative abundance of deleterious bacterial taxa such as Enterobacteriaceae and Desulfovibrionaceae. Conversely, several members of the Ruminococcaceae and Lachnospiraceae families, including bacteria known to produce the fermentative products short-chain fatty acids (SCFAs), had a reduced relative proportion compared to non-infected controls. Accordingly, infection led to a transient decrease in systemic SCFA amounts. SCFA supplementation during infection had no effect on clinical and inflammatory parameters. Lastly, a strong correlation between some gut microbiota taxa and clinical and inflammation indices of SARS-CoV-2 infection severity was evidenced. Collectively, alteration of the gut microbiota correlates with disease severity in hamsters making this experimental model valuable for the design of interventional, gut microbiota-targeted, approaches for the control of COVID-19.Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; SCFAs, short-chain fatty acids; dpi, day post-infection; RT-PCR, reverse transcription polymerase chain reaction; IL, interleukin. ACE2, angiotensin converting enzyme 2; TMPRSS2, transmembrane serine protease 2.


Assuntos
COVID-19/microbiologia , COVID-19/fisiopatologia , Modelos Animais de Doenças , Microbioma Gastrointestinal , Mesocricetus , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , COVID-19/patologia , Cricetinae , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Humanos , Masculino , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Tratamento Farmacológico da COVID-19
6.
Exp Cell Res ; 316(2): 203-15, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19819238

RESUMO

The Ucma protein (Upper zone of growth plate and cartilage matrix associated protein) has recently been described as a novel secretory protein mainly expressed in cartilage and also as a novel vitamin-K-dependent protein named GRP (Gla-rich protein). This protein has the highest Gla content of any protein known to date. In this article, we identify four alternatively spliced variants of Ucma/GRP gene transcripts in mouse chondrocytes. We show that the expression of all four isoforms is associated with the early stages of chondrogenesis. The Ucma/GRP gene encodes four proteins named Ucma/GRP-F1, -F2, -F3, and -F4, which differ by exon 2, exon 4, or both. Among them, only Ucma/GRP-F1 and -F3 were secreted into the culture medium of transfected chondrocytes, while Ucma/GRP-F2 and -F4 accumulated in the cells. Using HeLa cells or freshly isolated embryonic mouse chondrocytes transfected with enhanced green fluorescent protein fusions, microscopy analysis revealed that Ucma/GRP-F1 and -F3 were localized in the Golgi complex, whereas Ucma/GRP-F2 and -F4 formed aggregates. This aggregation was microtubule-dependent since disruption of microtubules with nocodazole reduced Ucma/GRP-F2 and -F4 aggregation in a reversible manner. Using biochemical fractionation and Western blot analysis, Ucma/GRP-F1 and -F3 isoforms were detected in the soluble fraction while Ucma/GRP-F2 and -F4 were found in an insoluble-enriched fraction. We conclude that the co-expression of soluble and insoluble isoforms also Gla-rich and Gla-deleted isoforms may be finely tuned. Imbalance in isoform expression may therefore be involved in skeletal pathology.


Assuntos
Ácido 1-Carboxiglutâmico/análise , Processamento Alternativo/genética , Proteínas/genética , Animais , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Condrogênese/fisiologia , Citoplasma/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Éxons/genética , Proteínas da Matriz Extracelular , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Dados de Sequência Molecular , Nocodazol/farmacologia , Organelas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/química , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
7.
Nat Cancer ; 2(6): 611-628, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121941

RESUMO

Post-transcriptional modifications of RNA constitute an emerging regulatory layer of gene expression. The demethylase fat mass- and obesity-associated protein (FTO), an eraser of N6-methyladenosine (m6A), has been shown to play a role in cancer, but its contribution to tumor progression and the underlying mechanisms remain unclear. Here, we report widespread FTO downregulation in epithelial cancers associated with increased invasion, metastasis and worse clinical outcome. Both in vitro and in vivo, FTO silencing promotes cancer growth, cell motility and invasion. In human-derived tumor xenografts (PDXs), FTO pharmacological inhibition favors tumorigenesis. Mechanistically, we demonstrate that FTO depletion elicits an epithelial-to-mesenchymal transition (EMT) program through increased m6A and altered 3'-end processing of key mRNAs along the Wnt signaling cascade. Accordingly, FTO knockdown acts via EMT to sensitize mouse xenografts to Wnt inhibition. We thus identify FTO as a key regulator, across epithelial cancers, of Wnt-triggered EMT and tumor progression and reveal a therapeutically exploitable vulnerability of FTO-low tumors.


Assuntos
Neoplasias Epiteliais e Glandulares , RNA , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos
8.
Transl Oncol ; 13(2): 308-320, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31877463

RESUMO

Bone metastasis (BM) in cancer remains a critical issue because of its associated clinical and biological complications. Moreover, BM can alter the quality of life and survival rate of cancer patients. Growing evidence suggests that bones are a fertile ground for the development of metastasis through a "vicious circle" of bone resorption/formation and tumor growth. This review aims to outline the current major issues in the diagnosis and management of BM in the most common types of osteotropic cancers and describe the mechanisms and effects of BM. First, we discuss the incidence of BM through the following questions: Are we witnessing an increase in incidence, and are we now better equipped with modern imaging techniques? Is the advent of efficient bone resorption inhibitors affecting the bigger picture of BM management? Second, we discuss the potential effects of cancer progression and well-prescribed drugs, such as multitarget tyrosine kinase inhibitors, inhibitors of the mammalian target of rapamycin, and immune checkpoint inhibitors, on BM. Finally, we examine the duality of the effects of some therapies that may help in cancer treatment but may also contribute to further BM.

9.
Oncotarget ; 11(45): 4138-4154, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33227080

RESUMO

HIC1 (Hypermethylated In Cancer 1) a tumor suppressor gene located at 17p13.3, is frequently deleted or epigenetically silenced in many human tumors. HIC1 encodes a transcriptional repressor involved in various aspects of the DNA damage response and in complex regulatory loops with P53 and SIRT1. HIC1 expression in normal prostate tissues has not yet been investigated in detail. Here, we demonstrated by immunohistochemistry that detectable HIC1 expression is restricted to the stroma of both normal and tumor prostate tissues. By RT-qPCR, we showed that HIC1 is poorly expressed in all tested prostate epithelial lineage cell types: primary (PrEC), immortalized (RWPE1) or transformed androgen-dependent (LnCAP) or androgen-independent (PC3 and DU145) prostate epithelial cells. By contrast, HIC1 is strongly expressed in primary PrSMC and immortalized (WMPY-1) prostate myofibroblastic cells. HIC1 depletion in WPMY-1 cells induced decreases in α-SMA expression and contractile capability. In addition to SLUG, we identified stromal cell-derived factor 1/C-X-C motif chemokine 12 (SDF1/CXCL12) as a new HIC1 direct target-gene. Thus, our results identify HIC1 as a tumor suppressor gene which is poorly expressed in the epithelial cells targeted by the tumorigenic process. HIC1 is expressed in stromal myofibroblasts and regulates CXCL12/SDF1 expression, thereby highlighting a complex interplay mediating the tumor promoting activity of the tumor microenvironment. Our studies provide new insights into the role of HIC1 in normal prostatic epithelial-stromal interactions through direct repression of CXCL12 and new mechanistic clues on how its loss of function through promoter hypermethylation during aging could contribute to prostatic tumors.

10.
Cancer Res ; 80(13): 2914-2926, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32366476

RESUMO

Bone is the most common metastatic site for breast cancer. Although the estrogen-related receptor alpha (ERRα) has been implicated in breast cancer cell dissemination to the bone from the primary tumor, its role after tumor cell anchorage in the bone microenvironment remains elusive. Here, we reveal that ERRα inhibits the progression of bone metastases of breast cancer cells by increasing the immune activity of the bone microenvironment. Overexpression of ERRα in breast cancer bone metastases induced expression of chemokines CCL17 and CCL20 and repressed production of TGFß3. Subsequently, CD8+ T lymphocytes recruited to bone metastases escaped TGFß signaling control and were endowed with exacerbated cytotoxic features, resulting in significant reduction in metastases. The clinical relevance of our findings in mice was confirmed in over 240 patients with breast cancer. Thus, this study reveals that ERRα regulates immune properties in the bone microenvironment that contributes to decreasing metastatic growth. SIGNIFICANCE: This study places ERRα at the interplay between the immune response and bone metastases of breast cancer, highlighting a potential target for intervention in advanced disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/prevenção & controle , Neoplasias da Mama/prevenção & controle , Receptores de Estrogênio/metabolismo , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Quimiocina CCL17/genética , Quimiocina CCL17/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Receptores de Estrogênio/genética , Transdução de Sinais , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor ERRalfa Relacionado ao Estrogênio
11.
J Bone Oncol ; 22: 100291, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32292693

RESUMO

The current health crisis caused by COVID-19 is a challenge for oncology treatment, especially when it comes to radiotherapy. Cancer patients are already known to be very fragile and COVID-19 brings about the risk of severe respiratory complications. In order to treat patients safely while protecting medical teams, the entire health care system must optimize the way it approaches prevention and treatment at a time when social distancing is key to stemming this pandemic. All indications and treatment modalities must be re-discussed. This is particularly the case for radiotherapy of bone metastases for which it is possible to reduce the number of sessions, the frequency of transport and the complexity of treatments. These changes will have to be discussed according to the organization of each radiotherapy department and the health situation, while medical teams must remain vigilant about the risks of complications of bone metastases, particularly spinal metastases. In this short piece, the members of the GEMO (the European Study Group of Bone Metastases) offer a number of recommendations to achieve the above objectives, both in general and in relation to five of the most common situations on radiation therapy for bone metastases.

12.
Cancer Lett ; 438: 32-43, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201302

RESUMO

Prostate cancers have a strong propensity to metastasize to bone and promote osteoblastic lesions. TMPRSS2:ERG is the most frequent gene rearrangement identified in prostate cancer, but whether it is involved in prostate cancer bone metastases is largely unknown. We exploited an intratibial metastasis model to address this issue and we found that ectopic expression of the TMPRSS2:ERG fusion enhances the ability of prostate cancer cell lines to induce osteoblastic lesions by stimulating bone formation and inhibiting the osteolytic response. In line with these in vivo results, we demonstrate that the TMPRSS2:ERG fusion protein increases the expression of osteoblastic markers, including Collagen Type I Alpha 1 Chain and Alkaline Phosphatase, as well as Endothelin-1, a protein with a documented role in osteoblastic bone lesion formation. Moreover, we determined that the TMPRSS2:ERG fusion protein is bound to the regulatory regions of these genes in prostate cancer cell lines, and we report that the expression levels of these osteoblastic markers are correlated with the expression of the TMPRSS2:ERG fusion in patient metastasis samples. Taken together, our results reveal that the TMPRSS2:ERG gene fusion is involved in osteoblastic lesion formation induced by prostate cancer cells.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Osteoblastos/metabolismo , Neoplasias da Próstata/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Cadeia alfa 1 do Colágeno Tipo I , Endotelina-1/genética , Endotelina-1/metabolismo , Humanos , Masculino , Camundongos SCID , Proteínas de Fusão Oncogênica/metabolismo , Osteoblastos/patologia , Células PC-3 , Fenótipo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transplante Heterólogo , Carga Tumoral/genética
13.
Mol Cell Biol ; 23(4): 1390-402, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12556498

RESUMO

FLI-1 is an ETS family transcription factor which is overexpressed in Friend erythroleukemia and contributes to the blockage of differentiation of erythroleukemic cells. We show here that FLI-1 represses the transcriptional activity of the beta-globin gene promoter in MEL cells and interacts with two of its critical transactivators, GATA-1 and EKLF. Unexpectedly, FLI-1 enhances the stimulating activity of GATA-1 on a GATA-1-responsive promoter but represses that of EKLF on beta-globin and an EKLF-responsive artificial promoters. This repressive effect of FLI-1 requires the ETS DNA binding domain and its association with either the N- or C-terminal domain, which themselves interact with EKLF but not with GATA-1. Furthermore, the FLI-1 ETS domain alone behaves as an autonomous repression domain when linked to the Gal4 DNA binding domain. Taken together, these data indicate that FLI-1 represses EKLF-dependent transcription due to the repression activity of its ETS domain and its indirect recruitment to erythroid promoters by protein-protein interaction with EKLF. Reciprocally, we also show that EKLF itself represses the FLI-1-dependent megakaryocytic GPIX gene promoter, thus further suggesting that functional cross-antagonism between FLI-1 and EKLF might be involved in the control of the erythrocytic versus megakaryocytic differentiation of bipotential progenitors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Acetamidas/farmacologia , Animais , Sequência de Bases , Diferenciação Celular/fisiologia , Células Cultivadas , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Eritrócitos/citologia , Eritrócitos/fisiologia , Fatores de Ligação de DNA Eritroide Específicos , Fator de Transcrição GATA1 , Globinas/efeitos dos fármacos , Globinas/genética , Fatores de Transcrição Kruppel-Like , Camundongos , Dados de Sequência Molecular , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteína Proto-Oncogênica c-fli-1 , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica
14.
Int J Dev Biol ; 50(6): 553-60, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16741870

RESUMO

Amphibian metamorphosis is under the strict control of thyroid hormones (TH). These hormones induce metamorphosis by controlling gene expression through binding to thyroid hormone receptors (TRs). Necturus maculosus is considered to be an obligatory paedomorphic Amphibian since metamorphosis never occurs spontaneously and cannot be induced by pharmacological means. Since metamorphosis depends on the acquisition of response of tadpole tissues to thyroid hormone, we aimed to determine TR gene expression patterns in Necturus maculosus as well as the expression of two TH-related genes: Cytosolic Thyroid Hormone-Binding Protein (CTHBP)-M2-pyruvate kinase, a gene encoding a cytosolic TH binding protein and stromelysin 3, a direct TH target gene in Xenopus laevis. Tissue samples were obtained from specimens of Necturus maculosus. We performed in situ hybridization using non-cross-hybridizing RNA probes obtained from the cloned Necturus TRalpha and TRbeta genes. We found clear expression of Necturus TRalpha gene in several tissues including the central nervous system, epithelial cells of digestive and urinary organs, as well as myocardium and skeletal muscle. TRbeta was also expressed in the brain. In other tissues, hybridization signals were too low to draw reliable conclusions about their precise distribution. In addition, we observed that the expression of CTHBP and ST3 is largely distinct from that of TRs. The fact that we observed a clear expression of TRalpha and TRbeta which are evolutionary conserved, suggests that Necturus tissues express TRs. Our results thus indicate that, in contrast to previously held hypotheses, Necturus tissues are TH responsive.


Assuntos
Receptores dos Hormônios Tireóideos/genética , Animais , Feminino , Masculino , Metaloproteinase 11 da Matriz/biossíntese , Metaloproteinase 11 da Matriz/genética , Metamorfose Biológica/fisiologia , Necturus maculosus , Receptores dos Hormônios Tireóideos/biossíntese
15.
Oncotarget ; 8(7): 11827-11840, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28055969

RESUMO

Bone metastasis is the major deleterious event in prostate cancer (PCa). TMPRSS2-ERG fusion is one of the most common chromosomic rearrangements in PCa. However, its implication in bone metastasis development is still unclear. Since bone metastasis starts with the tropism of cancer cells to bone through specific migratory and invasive processes involving osteomimetic capabilities, it is crucial to better our understanding of the influence of TMPRSS2-ERG expression in the mechanisms underlying the bone tropism properties of PCa cells. We developed bioluminescent cell lines expressing the TMPRSS2-ERG fusion in order to assess its role in tumor growth and bone metastasis appearance in a mouse model. First, we showed that the TMPRSS2-ERG fusion increases cell migration and subcutaneous tumor size. Second, using intracardiac injection experiments in mice, we showed that the expression of TMPRSS2-ERG fusion increases the number of metastases in bone. Moreover, TMPRSS2-ERG affects the pattern of metastatic spread by increasing the incidence of tumors in hind limbs and spine, which are two of the most frequent sites of human PCa metastases. Finally, transcriptome analysis highlighted a series of genes regulated by the fusion and involved in the metastatic process. Altogether, our work indicates that TMPRSS2-ERG increases bone tropism of PCa cells and metastasis development.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Proteínas de Fusão Oncogênica/biossíntese , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos SCID , Metástase Neoplásica , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Transfecção
16.
Chest ; 130(5): 1397-404, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17099016

RESUMO

BACKGROUND: To assess whether fresh aortic allografts (AAs) can be used for tracheal replacement. METHODS: Twenty-one male minipigs underwent tracheal replacement using AAs harvested from female pigs. The length of replaced segments exceeded 50% of the trachea. A stent was implanted into the lumen of the AA to prevent collapse. The animals were killed at 3-month intervals, and AAs were assessed for ingrowth of respiratory epithelium and cartilage formation and tested for type II collagen formation and the presence of the SRY gene. RESULTS: A high stent migration rate was observed. Only 10 pigs and 4 pigs made it to follow-up periods exceeding 3 months and 9 months, respectively. Neither rejection nor ischemia were observed. At 3 months, a metaplastic epithelium lined the graft. At 10 months, a posterior membrane could be seen with immature cartilage and disorganized elastic fibers. SRY gene assay showed that the cells engrafted in the AAs, particularly at the level of the newly formed cartilage, were of male origin and thus originated from the recipient. CONCLUSION: This study confirms that a fresh AA, replacing more than half of the trachea of the pig, transforms into a conduit containing the major tracheal components. These components are relatively immature and do not as of yet replicate the form and function of the native trachea. Questions remain concerning the exact mechanisms of this process. Further research on the role of tracheal replacement is recommended.


Assuntos
Aorta/transplante , Traqueia/cirurgia , Transplantes , Animais , Aorta/patologia , Cartilagem/citologia , Colágeno/metabolismo , DNA/genética , DNA/metabolismo , Feminino , Migração de Corpo Estranho , Genes sry/genética , Masculino , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Stents , Suínos , Porco Miniatura , Transplante Homólogo
17.
Eur J Hum Genet ; 24(1): 37-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25782671

RESUMO

The expression gradient of the morphogen Sonic Hedgehog (SHH) is crucial in establishing the number and the identity of the digits during anteroposterior patterning of the limb. Its anterior ectopic expression is responsible for preaxial polydactyly (PPD). Most of these malformations are due to the gain-of-function of the Zone of Polarizing Activity Regulatory Sequence, the only limb-specific enhancer of SHH known to date. We report a family affected with a novel condition associating PPD and hypertrichosis of the upper back, following an autosomal dominant mode of inheritance. This phenotype is consistent with deregulation of SHH expression during limb and follicle development. In affected members, we identified a 2 kb deletion located ~240 kb upstream from the SHH promoter. The deleted sequence is capable of repressing the transcriptional activity of the SHH promoter in vitro, consistent with a silencer activity. We hypothesize that the deletion of this silencer could be responsible for SHH deregulation during development, leading to a PPD-hypertrichosis phenotype.


Assuntos
Sequência de Bases , Proteínas Hedgehog/genética , Hipertricose/genética , Polidactilia/genética , Deleção de Sequência , Elementos Silenciadores Transcricionais , Regiões 5' não Traduzidas , Adolescente , Adulto , Idoso , Padronização Corporal/genética , Criança , Feminino , Dedos/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Haplótipos , Humanos , Hipertricose/etnologia , Hipertricose/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Fenótipo , Polidactilia/etnologia , Polidactilia/patologia , Análise de Sequência de DNA , População Branca
18.
Oncotarget ; 7(47): 77071-77086, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27776343

RESUMO

Bone metastases are one of the main complications of prostate cancer and they are incurable. We investigated whether and how estrogen receptor-related receptor alpha (ERRα) is involved in bone tumor progression associated with advanced prostate cancer. By meta-analysis, we first found that ERRα expression is correlated with castration-resistant prostate cancer (CRPC), the hallmark of progressive disease. We then analyzed tumor cell progression and the associated signaling pathways in gain-of-function/loss-of-function CRPC models in vivo and in vitro. Increased levels of ERRα in tumor cells led to rapid tumor progression, with both bone destruction and formation, and direct impacts on osteoclasts and osteoblasts. VEGF-A, WNT5A and TGFß1 were upregulated by ERRα in tumor cells and all of these factors also significantly and positively correlated withERRα expression in CRPC patient specimens. Finally, high levels of ERRα in tumor cells stimulated the pro-metastatic factor periostin expression in the stroma, suggesting that ERRα regulates the tumor stromal cell microenvironment to enhance tumor progression. Taken together, our data demonstrate that ERRα is a regulator of CRPC cell progression in bone. Therefore, inhibiting ERRα may constitute a new therapeutic strategy for prostate cancer skeletal-related events.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Neoplasias Ósseas/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias de Próstata Resistentes à Castração/genética , Receptores de Estrogênio/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt-5a/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
19.
Oncogene ; 22(50): 8072-84, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14603248

RESUMO

Transcription factors are known to interact with each other to modulate their transcriptional activity. In this study, we found that the transcriptional activity of human Erg (one of the Ets family-transcription factors) was repressed by several nuclear receptors, including human estrogen receptor ERalpha, nonsteroid receptors and orphan receptors. Conversely, Erg inhibited ERalpha-dependent transcription. These reciprocal functional interactions extended to other nuclear receptors such as thyroid hormone and retinoic acid receptors, as well as to Fli1, an ERG-related ETS factor. Although similarly inhibited by overexpression of the orphan nuclear receptors ERR1 and RORalpha, ERG activity was unaffected by either REV-ERBalpha1 or COUP-TFII. The antagonism between ERG and ERalpha did not depend on DNA binding inhibition or direct protein-protein interactions. Repression of ERalpha-dependent transcription required the carboxyterminal and aminoterminal transactivation domains of Erg whereas the carboxyterminal AF-2 domain of ERalpha was necessary for repression of Erg activity. Reciprocal inhibition between Erg and ERalpha was not alleviated by overexpressing CBP, SRC-1 or RIP 140, three nuclear coactivator proteins. A negative cross-talk observed between Erg and ERalpha expands their potential range of regulation and may be relevant in vivo, particularly in endothelial, urogenital and cartilaginous tissues where both factors are expressed.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/genética , Receptores de Estrogênio/genética , Transativadores , Transcrição Gênica , Animais , DNA/metabolismo , Canal de Potássio ERG1 , Receptor alfa de Estrogênio , Canais de Potássio Éter-A-Go-Go , Humanos , Canais de Potássio/biossíntese , Ratos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/biossíntese , Regulador Transcricional ERG
20.
Med Sci (Paris) ; 19(11): 1121-7, 2003 Nov.
Artigo em Francês | MEDLINE | ID: mdl-14648483

RESUMO

Nuclear receptors are transcription factors mediating a signal pathway that triggers the cell into differentiation. By contrast, membrane receptors mediate a proliferation signal pathway via a phosphorylation cascade that activates transcription factors such as NF-kappa B and AP-1 complex. To allow efficient cellular integration of these contradictory signals, transcription factors mutually interact and modulate their transcription activity. Although often synergistic, these interactions can also be negative. They then result from various mechanisms acting either at the transcriptional level (competitive binding to DNA or to a common limitant cofactor...) or upstream DNA binding (inhibition of DNA binding, inhibition of phosphorylation...). Whatever the precise mechanisms, these negative interactions are significant in vivo. For instance, glucocorticoid and PPAR receptors repress the transcription activity of the pro-inflammatory factor NF-kappa B. This partly explains the anti-inflammatory effects of their respective ligands (glucocorticoids and fibrates). Likewise, interactions between nuclear receptors and AP-1 complex are likely to participate to the anti-oncogenic activity of glucocorticoids and retinoic acid.


Assuntos
Transformação Celular Neoplásica/patologia , DNA/metabolismo , Inflamação/fisiopatologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia , Humanos , Ligantes , NF-kappa B/farmacologia , Fosforilação , Fator de Transcrição AP-1/farmacologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA