Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Langmuir ; 38(20): 6322-6329, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35544610

RESUMO

X-ray reflectivity was used to study the several-nanometer-thick "crowded" layers that form at the interfaces between a planar electrode and concentrated solutions of ionic liquids. The ionic liquid [P14,6,6,6]+[NTf2]- was dissolved in either strongly polar propylene carbonate or weakly polar dimethyl carbonate. In the range of 19-100 vol % ionic liquid, between working electrode potentials +2 and +2.75 V, uniform 2-7 nm thick interfacial layers were observed. These layers are not pure anions but contain three to five times as many anions as cations and about the same percentage of solvent as the bulk solution. On the other side of the layer, the density is that of the bulk solution. These features are inconsistent with a picture of the crowded layer as a region of pure, close-packed counterions. Not only the layer thickness but also the charge density decrease with increasing dilution at any given applied voltage. This appears to indicate, counterintuitively, that a thinner layer with lower net charge density will screen an electric field as effectively as a thicker layer with higher charge density.

2.
Langmuir ; 36(4): 906-910, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31913043

RESUMO

A density-depleted region ("gap") is known to exist between water and hydrophobic surfaces. Using X-ray reflectivity, we have observed similar gaps between hydrophobic self-assembled monolayers (SAMs) and four other polar liquids. For these liquids and for water, the observed electron density depletion is nonzero and is in most cases slightly greater than the depletion attributable to the layer of hydrogen atoms at the SAM surface. On the other hand, the observed X-ray reflectivity from the interfaces between SAMs and three nonpolar liquids studied can be explained either without gaps or with smaller gaps. Thus, polar liquids (including but not limited to water) stand away from even the terminal hydrogen atoms at hydrophobic surfaces, while nonpolar liquids interpenetrate the terminal region. There is no consistent correlation between the sizes of the gaps and the liquid-SAM contact angles, the relative polarities of the polar liquids, or their bulk densities.

3.
Phys Rev Lett ; 122(5): 058001, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30821995

RESUMO

Rare earths, which are fundamental components of modern technologies, are often extracted from aqueous solutions using surfactants at oil-water interfaces. Heavier lanthanides are more easily extracted, even though all lanthanides are chemically very similar. Using x-ray fluorescence measurements and theoretical arguments, we show that there is a sharp bulk-concentration-dependent transition in the interfacial adsorption of cations from aqueous solutions containing Er^{3+} or Nd^{3+} in contact with a floating monolayer. The threshold bulk concentration of erbium (Z=68) is an order of magnitude lower than that of neodymium (Z=60), and erbium is preferentially adsorbed when the solution contains both ions. This implies that elemental selectivity during separation originates at the surfactant interface. Electrostatic effects arising from the interface dielectric mismatch, ionic correlations, and sizes of the ions explain the sharp adsorption curve and selectivity.

4.
Langmuir ; 33(6): 1412-1418, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28107635

RESUMO

When lanthanide ions are present in the aqueous subphase of a floating monolayer (Langmuir film), the ions attracted to the interface will in many cases form commensurate and/or incommensurate two-dimensional structures. These lattices depend not only on the molecules forming the monolayer, but also on the atomic number of the lanthanide, with a sudden change between the lattice formed by lighter ions and that formed by heavier ions under a given monolayer. Since there are few other relevant differences between the lanthanides, we attribute the Z-dependent "transition" to the number of water molecules associated with each ion. The first hydration shell is thought to vary continuously from ∼9 in lighter lanthanides to ∼8 in heavier lanthanides.

5.
Langmuir ; 32(1): 73-7, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26691202

RESUMO

Charged (e.g., colloidal) particles in aqueous solutions will sometimes behave as though their effective charge has reversed, rather than reduced, by the attracted counterions. This is counterintuitive because it increases the electrostatic energy, but it has been proposed that lateral ordering of the ions could lower the free energy and favor overcharging (charge inversion). Using X-ray diffraction, we have observed sharp diffraction peaks from incommensurate Er(3+) counterion monolayers near charged surfaces formed by floating molecular monolayers. When the counterion lattice does not match the molecular surface lattice, this means that there is no specific attachment of ions, and thus the ionic lattice is formed due to interactions between charges in the counterlayer. Therefore, the existence of incommensurate ion lattices indicates that counterion ordering is a realistic mechanism. However, in this system our data rule out a well-known proposed "physical" mechanism-the Wigner liquid phase driven by Coulomb interactions.

6.
Langmuir ; 30(1): 196-202, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24350622

RESUMO

Understanding the factors that affect molecular self-assembly is crucial to building designed nanoscale structures. We have deposited nanoscale films of polyhedral oligomeric silsesquioxane (POSS) onto polished silicon substrates from a range of organic solvents. We studied these films using synchrotron X-ray reflectivity and found that dip-coating from benzene, toluene, or chloroform results in near-substrate ordering only, but when acetone, hexane, or THF is used, self-assembled layers are formed throughout the entire deposited film. We conclude that solvent polarizability is the factor that determines the alignment of the POSS molecules. We have successfully tested this prediction using additional solvents selected on the basis of their calculated polarizabilities.

7.
J Phys Chem B ; 128(27): 6542-6548, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38953612

RESUMO

Specific ion effects in the interactions of monovalent anions with amine groups─one of the hydrophilic moieties found in proteins─were investigated using octadecylamine monolayers floating at air-aqueous solution interfaces. We find that at solution pH 5.7, larger monovalent anions induce a nonzero pressure starting at higher areas/molecules, i.e., a wider "liquid expanded" region in the monolayer isotherms. Using X-ray fluorescence at near total reflection (XFNTR), an element- and surface-specific technique, ion adsorption to the amines at pH 5.7 is confirmed to be ion-specific and to follow the conventional Hofmeister series. However, at pH 4, this ion specificity is no longer observed. We propose that at the higher pH, the amine headgroups are only partially protonated, and large polarizable ions such as iodine are better able to boost amine protonation. At the lower pH, on the other hand, the monolayer is fully protonated, and electrostatic interactions dominate over ion specificity. These results demonstrate that ion specificity can be modified by changing the experimental conditions.

8.
J Am Chem Soc ; 135(44): 16533-44, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24159900

RESUMO

The controlled deposition of metal complexes from solution on inorganic surfaces offers access to functional materials that otherwise would be elusive. For such surface-confined interfaces to form, specific assembly sequences are often used. We show here that varying the assembly sequence of two well-defined and iso-structural osmium and ruthenium polypyridyl complexes results in interfaces with strikingly different spectroelectrochemical properties. Successive deposition of redox-active layers of osmium and ruthenium polypyridyl complexes, leads to self-propagating molecular assemblies (SPMAs) with distinct internal interfaces and individually addressable components. In contrast, the clear separation of these interfaces upon sequential deposition of these two complexes, results in charge trapping or electrochemical communication between the metal centers, as a function of layer thickness and applied assembly sequence. The SPMAs were characterized using a variety of techniques, including: UV­vis spectroscopy, spectroscopic ellipsometry, electrochemistry, synchrotron X-ray reflectivity, angle-resolved X-ray photoelectron spectroscopy, and spectroelectrochemistry. The combined data demonstrate that the sequence-dependent assembly is a decisive factor that influences and provides the material properties that are difficult to obtain otherwise.

9.
J Am Chem Soc ; 135(45): 17052-9, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24102100

RESUMO

Surface-confined double-helical polymers are generated by dynamic covalent assembly with preservation of chirality, metal coordination environment, and oxidation state of the precursor complexes. This one-step procedure involves both in solution and solution-to-surface assembly and resulted in chiral interfaces where pairs of ligands are wrapped around arrays of metal ions. In-plane XRD experiments revealed the formation of a highly ordered structure along the substrate surface. The chirality of the surfaces is expressed by the selective recognition of 3,4-dihydroxyphenylalanine (DOPA). The CD measurements show a response of the Δ-polymer-modified quartz substrates toward D-DOPA, whereas no change was observed after treatment with L-DOPA. These coordination-based interfaces assembled on metal-oxide substrates in combination with a redox-probe, [Os(bpy)3](PF6)2, in solution can resemble the behavior of a rectifier.


Assuntos
Di-Hidroxifenilalanina/química , Polímeros/química , Complexos de Coordenação/química , Di-Hidroxifenilalanina/isolamento & purificação , Levodopa/química , Levodopa/isolamento & purificação , Metais/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Óxidos/química , Estereoisomerismo
10.
Chemistry ; 19(27): 8821-31, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23682014

RESUMO

Molecular assemblies (MAs) of oligofurans and oligothiophenes were formed from solutions on various substrates. These films were obtained by alternating deposition of organic chromophores (oligofurans or oligothiophenes) and a palladium salt. These coordination-based MAs were characterized by UV/Vis spectroscopy, spectroscopic ellipsometry, atomic force microscopy (AFM), X-ray reflectivity (XRR), X-ray photoelectron spectroscopy (XPS), and electrochemistry. The MAs exhibit similar electrochemical behavior and their growth and structure are apparently not affected when different organic template layers are used. The density of the MAs is a function of the structure of the molecular component. The oligothiophene density is approximately 50% higher than that observed for the oligofuran-based assemblies. The optical and electrochemical properties of the MAs scale linearly with their thickness. The UV/Vis data indicate that upon increasing the film thickness, there is no significant conjugation between the metal-separated organic chromophores. DFT calculations confirmed that the HOMO-LUMO gap of the surface-bound oligofuran and oligothiophene metal oligomers do not change significantly upon increasing their chain length. However, electrochemical measurements indicate that the susceptibility of the MAs towards oxidation is dependent on the number of chromophore units.

11.
Langmuir ; 29(47): 14361-8, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24164244

RESUMO

We report synchrotron X-ray scattering studies of biomimetic crystallization of hydroxyapatite (the primary constituent of bone), using monolayers of fatty acid molecules floating on simulated body fluid (SBF) as well as aqueous solutions of calcium phosphate. A ∼10 Šthick film of amorphous material is observed to form immediately at the molecular monolayer, consistent with the proposed formation of "Posner clusters". This layer becomes denser but not significantly thicker as the subphase concentration and the temperature approach physiological conditions. The amorphous films do not crystallize within 24 h, in contrast to prior reports of more rapid crystallization using electron microscopy on ex situ samples. However, crystallization occurs almost immediately after our films are transferred onto solid substrates. These results illustrate the importance of in situ measurements for model biomineralization experiments.


Assuntos
Durapatita/química , Ácidos Graxos/química , Síncrotrons , Fosfatos de Cálcio/química , Cristalização , Microscopia Eletrônica , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Difração de Raios X
12.
Langmuir ; 28(1): 572-8, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22077377

RESUMO

Floating monolayer mixtures of cationic dioctadecyldimethyldiammonium bromide and anionic lipids were used as variable templates for the biomimetic nucleation of calcium carbonate and studied using grazing incidence X-ray diffraction. Varying the ratio of constituents changes the monolayer charge, structure, and molecular tilt. The nucleating surface of calcite also changes as the mixture is varied, and at an 80:20 ratio the (012) face is seen under a floating monolayer template for the first time. Our results indicate that the average template lattice is the major controlling factor in the oriented nucleation of CaCO(3). This is in contrast to the current view that the orientation is controlled by the stereochemical matching of the terminal functional group and molecular tilt with respect to the carbonate groups in the crystal.


Assuntos
Biomimética , Microscopia Eletrônica de Varredura , Estereoisomerismo
13.
ACS Appl Mater Interfaces ; 14(5): 7504-7512, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099919

RESUMO

The use of surfactants to attract dissolved ions to water surfaces and interfaces is an essential step in both solvent-based and solvent-free separation processes. We have studied the interactions of lanthanide ions in the aqueous subphase with monolayers of dihexadecyl phosphate at air-water interfaces. With heavier lanthanides (atomic number Z ≥ 65) in the subphase, the floating layer can be compressed to an area/molecule of about half the molecular cross section, indicating bilayer formation. X-ray fluorescence and reflectivity data support this conclusion. In the presence of lighter lanthanides (Z < 65), only monolayers are observed. Subphase-concentration-dependent studies using Er3+ (heavier) and Nd3+ (lighter) lanthanides show a stepwise progression, with ions attaching to the monolayer only when the solution concentration is >3 × 10-7 M. Above ∼10-5 M, bilayers form but only in the presence of the heavier lanthanide. Grazing incidence X-ray diffraction shows evidence of lateral ion-ion correlations in the bilayer structure but not in monolayers. Explicit solvent all-atom molecular dynamics simulations confirm the elevated ion-ion correlation in the bilayer system. This bilayer structure isolates heavier lanthanides but not lighter lanthanides from an aqueous solution and is therefore a potential mechanism for the selective separation of heavier lanthanides.

14.
Phys Rev Lett ; 107(11): 115503, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-22026685

RESUMO

It has long been known that thiol-terminated molecules self-assemble as commensurate monolayers on Au(111) surfaces. By spreading floating octadecanethiol monolayers on aqueous solutions of chloroauric acid (HAuCl4) and using x rays to reduce the gold ions as well as to probe the structure, we have observed the nucleation of (111)-oriented Au nanoparticles at thiol surfaces. This process may be similar to the formation of biogenic gold by bacteria. The thiol monolayer acts as a "soft template," changing its structure as Au crystals form so that there is a sqrt[3]×sqrt[3] commensurate relationship.

15.
Langmuir ; 27(4): 1319-25, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21128588

RESUMO

Multicomponent self-propagating molecular assemblies (SPMAs) have been generated from an organic chromophore, a redox-active polypyridyl complex, and PdCl(2). The structure of the multicomponent SPMA is not a linear combination of two assemblies generated with a single molecular constituent. Surface-confined assemblies formed from only the organic chromophore and PdCl(2) are known to follow linear growth, whereas the combination of polypyridyl complexes and PdCl(2) results in exponential growth. The present study demonstrates that an iterative deposition of both molecular building blocks with PdCl(2) results in an exponentially growing assembly. The nature of the assembly mechanism is dictated by the polypyridyl complex and overrides the linear growth process of the organic component. Relatively smooth, multicomponent SPMAs have been obtained with a thickness of ∼20 nm on silicon, glass, and indium-tin oxide (ITO) coated glass. Detailed information of the structure and of the surface-assembly chemistry were obtained using transmission optical (UV/Vis) spectroscopy, ellipsometry, atomic force microscopy (AFM), synchrotron X-ray reflectivity (XRR), and electrochemistry.

16.
J Am Chem Soc ; 132(41): 14554-61, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20863123

RESUMO

Metal-organic networks (MONs) were created by a stepwise solution deposition approach from vinylpyridine-based building blocks and PdCl(2). The combined experimental and computational study demonstrates the formation of saturated, structurally organized systems on solid supports. The rigid nature and geometry of the components are well-suited to form honeycomb and parallelogram structures, as predicted by a computational study. Detailed structural information of the new MONs was obtained by optical (UV/vis) spectroscopy, ellipsometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and synchrotron X-ray reflectivity (XRR). Notably, the XPS elemental composition indicates the formation of a palladium coordination-based network.

17.
Phys Rev Lett ; 105(3): 037803, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867810

RESUMO

Is there a low-density region ("gap") between water and a hydrophobic surface? Previous x-ray and neutron reflectivity results have been inconsistent because the effect (if any) is subresolution for the surfaces studied. We have used x-ray reflectivity to probe the interface between water and more hydrophobic smooth surfaces. The depleted region width increases with contact angle and becomes larger than the resolution, allowing definitive measurements. Large fluctuations are predicted at this interface; however, we find that their contribution to the interface roughness is too small to measure.

18.
Langmuir ; 26(10): 7126-32, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20073530

RESUMO

Liquid films of different silicate esters were deposited from volatile solvents on hydroxylated and hydrogen-passivated silicon surfaces. We show that adsorption of silicate ester molecules and the resulting structural morphology of the liquid films not only are determined by attractive van der Waals forces with contributions from electrostatic interactions between the silicone ester moieties and oxide surface sites but also can be tuned by modifying the substrate surface or by changing the liquid-solvent interactions. Our results also show the importance of the conformational properties of liquid molecules and their rearrangements at the liquid/solid interface for controlled solvent-assisted film deposition.

19.
Phys Rev Lett ; 103(17): 175701, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19905770

RESUMO

Pentaphenyl trimethyl trisiloxane is an isotropic liquid at room temperature with a dynamic glass transition at 224 K. Using x-ray reflectivity, we see surface density oscillations (layers) develop below 285 K, similar to those seen in other metallic and dielectric liquids and in computer simulations. The layering threshold is approximately 0.23 times the liquid-gas critical temperature. Upon cooling further, there is a sharp increase at 224 K in the persistence of the surface layers into the bulk material, i.e., an apparently discontinuous change in static structure at the glass transition.

20.
J Am Chem Soc ; 130(15): 5040-1, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18366173

RESUMO

Combining strong metal-ligand coordination and pi-pi interactions affords a 3D-ordered molecular-based multilayer. The organization of the assembly is apparent from the optical properties and X-ray reflectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA