Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686930

RESUMO

The effects of resonance interaction of plasmonic and photonic modes in hybrid metal-dielectric structures with square Al nanodisk lattices coupled with a Si waveguide layer were investigated using micro-photoluminescence (micro-PL) spectroscopy. As radiation sources, GeSi quantum dots were embedded in the waveguide. A set of narrow PL peaks superimposed on the broad bands were observed in the range of quantum dot emissions. At optimal parameters of Al nanodisks lattices, almost one order increasing of PL intensity was obtained. The experimental PL spectra are in good agreement with results of theoretical calculations. The realization of high-quality bound states in the continuum was confirmed by a comparative analysis of the experimental spectra and theoretical dispersion dependences. The results demonstrated the perspectives of these type structures for a flat band realization and supporting the slow light.

2.
Nanomaterials (Basel) ; 12(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080030

RESUMO

Photodetection based on assemblies of quantum dots (QDs) is able to tie the advantages of both the conventional photodetector and unique electronic properties of zero-dimensional structures in an unprecedented way. However, the biggest drawback of QDs is the small absorbance of infrared radiation due to the low density of the states coupled to the dots. In this paper, we report on the Ge/Si QD pin photodiodes integrated with photon-trapping hole array structures of various thicknesses. The aim of this study was to search for the hole array thickness that provided the maximum optical response of the light-trapping Ge/Si QD detectors. With this purpose, the embedded hole arrays were etched to different depths ranging from 100 to 550 nm. By micropatterning Ge/Si QD photodiodes, we were able to redirect normal incident light laterally along the plane of the dots, therefore facilitating the optical conversion of the near-infrared photodetectors due to elongation of the effective absorption length. Compared with the conventional flat photodetector, the responsivity of all microstructured devices had a polarization-independent improvement in the 1.0-1.8-µm wavelength range. The maximum photocurrent enhancement factor (≈50× at 1.7 µm) was achieved when the thickness of the photon-trapping structure reached the depth of the buried QD layers.

3.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35564116

RESUMO

The radiation-induced phenomena of CaSi2 crystal growth were investigated, both directly during the epitaxial CaF2 growth on Si (111) and film irradiation with fast electrons on Si (111) after its formation, while maintaining the specified film thickness, substrate temperature and radiation dose. Irradiation in the process of the epitaxial CaF2 film growth leads to the formation of CaSi2 nanowhiskers with an average size of 5 µm oriented along the direction <110>. The electron irradiation of the formed film, under similar conditions, leads to the homogeneous nucleation of CaSi2 crystals and their proliferation as inclusions in the CaF2 film. It is shown that both approaches lead to the formation of CaSi2 crystals of the 3R polymorph in the irradiated region of a 10 nm thick CaF2 layer.

4.
Nanomaterials (Basel) ; 12(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296813

RESUMO

The formation of CaSi2 polycrystalline structures under the postgrowth electron irradiation of epitaxial CaF2/Si(111) films with embedded thin Si layers was studied. The dependence on the electron exposure time was investigated for two types of structures with different film thicknesses. The optimal conditions for the formation of two-dimensional CaSi2 structures were found. Raman spectra of the structures after a 1 min electron irradiation demonstrated only one pronounced peak corresponding to the vibrations of Si atoms in the plane of the calcium-intercalated two-dimensional Si layer. An increase in the exposure time resulted in the transition from two- to three-dimensional CaSi2 structures having more complex Raman spectra with additional peaks typical of bulk CaSi2 crystals. Based on the results of microscopic studies and transport measurements, a model explaining the observed effects was proposed.

5.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34578618

RESUMO

Group-IV photonic devices that contain Si and Ge are very attractive due to their compatibility with integrated silicon photonics platforms. Despite the recent progress in fabrication of Ge/Si quantum dot (QD) photodetectors, their low quantum efficiency still remains a major challenge and different approaches to improve the QD photoresponse are under investigation. In this paper, we report on the fabrication and optical characterization of Ge/Si QD pin photodiodes integrated with photon-trapping microstructures for near-infrared photodetection. The photon traps represent vertical holes having 2D periodicity with a feature size of about 1 µm on the diode surface, which significantly increase the normal incidence light absorption of Ge/Si QDs due to generation of lateral optical modes in the wide telecommunication wavelength range. For a hole array periodicity of 1700 nm and hole diameter of 1130 nm, the responsivity of the photon-trapping device is found to be enhanced by about 25 times at λ=1.2 µm and by 34 times at λ≈1.6 µm relative to a bare detector without holes. These results make the micro/nanohole Ge/Si QD photodiodes promising to cover the operation wavelength range from the telecom O-band (1260-1360 nm) up to the L-band (1565-1625 nm).

6.
Nanomaterials (Basel) ; 11(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918328

RESUMO

A new approach to improve the light-emitting efficiency of Ge(Si) quantum dots (QDs) by the formation of an ordered array of QDs on a pit-patterned silicon-on-insulator (SOI) substrate is presented. This approach makes it possible to use the same pre-patterned substrate both for the growth of spatially ordered QDs and for the formation of photonic crystal (PhC) in which QDs are embedded. The periodic array of deep pits on the SOI substrate simultaneously serves as a template for spatially ordering of QDs and the basis for two-dimensional PhCs. As a result of theoretical and experimental studies, the main regularities of the QD nucleation on the pre-patterned surface with deep pits were revealed. The parameters of the pit-patterned substrate (the period of the location of the pits, the pit shape, and depth) providing a significant increase of the QD luminescence intensity due to the effective interaction of QD emission with the PhC modes are found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA