Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Virus Genes ; 56(2): 266-277, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970620

RESUMO

The exo-xis region of lambdoid phages contains open reading frames and genes that appear to be evolutionarily important. However, this region has received little attention up to now. In this study, we provided evidence that ea22, the largest gene of this region, favors the lysogenic pathway over the lytic pathway in contrast to other characterized exo-xis region genes including ea8.5, orf61, orf60a, and orf63. Our assays also suggest some functional analogies between Ea22 and the phage integrase protein (Int). While it is unsurprising that Ea22 operates similarly in both λ and Stx phages, we have observed some distinctions that may arise from considerable sequence dissimilarity at the carboxy termini of each protein.


Assuntos
Bacteriófago lambda/genética , Sequência de Bases/genética , Lisogenia/genética , Proteínas Virais/genética , Sequência de Aminoácidos/genética , Escherichia coli/genética , Escherichia coli/virologia , Regulação Viral da Expressão Gênica/genética , Fases de Leitura Aberta/genética
2.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882938

RESUMO

A newly isolated bacteriophage infecting Enterococcus faecalis strains has been characterized, including determination of its molecular features. This phage, named vB_EfaS-271, has been classified as a Siphoviridae member, according to electron microscopy characterization of the virions, composed of a 50 nm-diameter head and a long, flexible, noncontractable tail (219 × 12.5 nm). Analysis of the whole dsDNA genome of this phage showed that it consists of 40,197 bp and functional modules containing genes coding for proteins that are involved in DNA replication (including DNA polymerase/primase), morphogenesis, packaging and cell lysis. Mass spectrometry analysis allowed us to identify several phage-encoded proteins. vB_EfaS-271 reveals a relatively narrow host range, as it is able to infect only a few E. faecalis strains. On the other hand, it is a virulent phage (unable to lysogenize host cells), effectively and quickly destroying cultures of sensitive host bacteria, with a latent period as short as 8 min and burst size of approximately 70 phages per cell at 37 °C. This phage was also able to destroy biofilms formed by E. faecalis. These results contribute to our understanding of the biodiversity of bacteriophages, confirming the high variability among these viruses and indicating specific genetic and functional features of vB_EfaS-271.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , DNA Viral/análise , Enterococcus faecalis/virologia , Genoma Viral , Proteínas Virais/análise , Vírion/crescimento & desenvolvimento , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Especificidade de Hospedeiro , Filogenia , Análise de Sequência de DNA , Esgotos/microbiologia , Proteínas Virais/metabolismo , Vírion/genética
3.
Plasmid ; 78: 71-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25111672

RESUMO

Until recently, only two small regulatory RNAs encoded by lambdoid bacteriophages were known. These transcripts are derived from paQ and pO promoters. The former one is supposed to act as an antisense RNA for expression of the Q gene, encoding a transcription antitermination protein. The latter transcript, called oop RNA, was initially proposed to have a double role, in establishing expression of the cI gene and in providing a primer for DNA replication. Although the initially proposed mechanisms by which oop RNA could influence the choice between two alternative developmental pathways of the phage and the initiation of phage DNA replication were found not true, the pO promoter has been demonstrated to be important for both regulation of phage development and control of DNA replication. Namely, the pO-derived transcript is an antisense RNA for expression of the cII gene, and pO is a part of a dual promoter system responsible for regulation of initiation of DNA synthesis from the oriλ region. Very recent studies identified a battery of small RNAs encoded by lambdoid bacteriophages existing as prophages in chromosomes of enterohemorrhagic Escherichia coli strains. Some of them have very interesting functions, like anti-small RNAs.


Assuntos
Bacteriófago lambda/genética , Escherichia coli Êntero-Hemorrágica/genética , Plasmídeos/genética , RNA Viral/genética , Bacteriófagos/genética , Regulação Viral da Expressão Gênica , Genoma Bacteriano , Regiões Promotoras Genéticas , RNA Antissenso , Pequeno RNA não Traduzido/genética
4.
Microb Cell Fact ; 13: 105, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25048369

RESUMO

BACKGROUND: It is generally believed that there are many natural sources of as yet unknown bioactive compounds with a high biotechnological potential. However, the common method based on the use of cell extracts in the preliminary screening for particular molecules or activities is problematic as amounts of obtained compounds may be low, and such experiments are hardly reproducible. Therefore, the aim of this work was to test whether a novel strategy to search for previously unknown biological activities can be efficient. This strategy is based on construction of metagenomic libraries and employment of Escherichia coli strains as cell factories producing compounds of properties potentially useful in biotechnology. RESULTS: Three cyanobacterial metagenomic libraries were constructed in the fosmid system. The libraries were screened for various biological activities. Extracts from selected E. coli clones bearing constructs with fragments of cyanobacterial genomes revealed antimicrobial or anticancer activities. Interestingly, stimulation of growth of host bacteria bearing particular plasmids with certain cyanobacterial genes was detected, suggesting a potential possibility for improvement of E. coli cultivation during biotechnological production. The most interesting plasmids were sequenced, and putative mechanisms of biological effects caused by cyanobacterial gene products are discussed. CONCLUSIONS: The strategy of exploring cyanobacteria as sources of bioactive compounds, based on E. coli cell factories producing compounds due to expression of genes from metagenomic libraries, appears to be effective.


Assuntos
Cianobactérias/genética , Escherichia coli/genética , Biblioteca Gênica , Vetores Genéticos , Metagenoma , Metagenômica
5.
J Appl Genet ; 65(1): 191-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37968427

RESUMO

Lambdoid bacteriophages are excellent models in studies on molecular aspects of virus-host interactions. However, some of them carry genes encoding toxins which are responsible for virulence of pathogenic strains of bacteria. Shiga toxin-converting bacteriophages (Stx phages) encode Shiga toxins that cause virulence of enterohemorrhagic Escherichia coli (EHEC), and their effective production depends on Stx prophage induction. The exo-xis region of the lambdoid phage genome consists of genes which are dispensable for the phage multiplication under laboratory conditions; however, they might modulate the virus development. Nevertheless, their exact effects on the phage and host physiology remained unclear. Here, we present results of complex studies on the role of the exo-xis region of bacteriophage Φ24B, one of Stx2b phages. Transcriptomic analyses, together with proteomic and metabolomic studies, provided the basis for understanding the functions of the exo-xis region. Genes from this region promoted lytic development of the phage over lysogenization. Moreover, expression of the host genes coding for DnaK, DnaJ, GrpE, and GroELS chaperones was impaired in the cells infected with the Δexo-xis phage mutant, relative to the wild-type virus, corroborating the conclusion about lytic development promotion by the exo-xis region. Proteomic and metabolomic analyses indicated also modulation of gad and nrf operons, and levels of amino acids and acylcarnitines, respectively. In conclusion, the exo-xis region controls phage propagation and host metabolism by influencing expression of different phage and bacterial genes, directing the virus to the lytic rather than lysogenic developmental mode.


Assuntos
Escherichia coli , Toxina Shiga , Escherichia coli/genética , Toxina Shiga/genética , Bacteriófago lambda/fisiologia , Proteômica , Lisogenia
6.
Front Cell Infect Microbiol ; 12: 941867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992162

RESUMO

Phage therapy is a promising alternative treatment of bacterial infections in human and animals. Nevertheless, despite the appearance of many bacterial strains resistant to antibiotics, these drugs still remain important therapeutics used in human and veterinary medicine. Although experimental phage therapy of infections caused by Salmonella enterica was described previously by many groups, those studies focused solely on effects caused by bacteriophages. Here, we compared the use of phage therapy (employing a cocktail composed of two previously isolated and characterized bacteriophages, vB_SenM-2 and vB_Sen-TO17) and antibiotics (enrofloxacin and colistin) in chickens infected experimentally with S. enterica serovar Typhimurium. We found that the efficacies of both types of therapies (i.e. the use of antibiotics and phage cocktail) were high and very similar to one another when the treatment was applied shortly (one day) after the infection. Under these conditions, S. Typhimurium was quickly eliminated from the gastrointestinal tract (GIT), to the amount not detectable by the used methods. However, later treatment (2 or 4 days after detection of S. Typhimurium in chicken feces) with the phage cocktail was significantly less effective. Bacteriophages remained in the GIT for up to 2-3 weeks, and then were absent in feces and cloaca swabs. Interestingly, both phages could be found in various organs of chickens though with a relatively low abundance. No development of resistance of S. Typhimurium to phages or antibiotics was detected during the experiment. Importantly, although antibiotics significantly changed the GIT microbiome of chickens in a long-term manner, analogous changes caused by phages were transient, and the microbiome normalized a few weeks after the treatment. In conclusion, phage therapy against S. Typhimurium infection in chickens appeared as effective as antibiotic therapy (with either enrofloxacin or colistin), and less invasive than the use the antibiotics as fewer changes in the microbiome were observed.


Assuntos
Bacteriófagos , Terapia por Fagos , Salmonelose Animal , Salmonella enterica , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Galinhas , Colistina/farmacologia , Enrofloxacina/farmacologia , Salmonelose Animal/microbiologia , Salmonelose Animal/terapia , Salmonella typhimurium , Sorogrupo
7.
Toxins (Basel) ; 13(9)2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564648

RESUMO

Shiga toxin-producing Escherichia coli (STEC) can cause severe infections in humans, leading to serious diseases and dangerous complications, such as hemolytic-uremic syndrome. Although cattle are a major reservoir of STEC, the most commonly occurring source of human infections are food products (e.g., vegetables) contaminated with cow feces (often due to the use of natural fertilizers in agriculture). Since the use of antibiotics against STEC is controversial, other methods for protection of food against contaminations by these bacteria are required. Here, we propose a validation system for selection of bacteriophages against STEC contamination. As a model system, we have employed a STEC-specific bacteriophage vB_Eco4M-7 and the E. coli O157:H7 strain no. 86-24, bearing Shiga toxin-converting prophage ST2-8624 (Δstx2::cat gfp). When these bacteria were administered on the surface of sliced cucumber (as a model vegetable), significant decrease in number viable E. coli cells was observed after 6 h of incubation. No toxicity of vB_Eco4M-7 against mammalian cells (using the Balb/3T3 cell line as a model) was detected. A rapid decrease of optical density of STEC culture was demonstrated following addition of a vB_Eco4M-7 lysate. However, longer incubation of susceptible bacteria with this bacteriophage resulted in the appearance of phage-resistant cells which predominated in the culture after 24 h incubation. Interestingly, efficiency of selection of bacteria resistant to vB_Eco4M-7 was higher at higher multiplicity of infection (MOI); the highest efficiency was evident at MOI 10, while the lowest occurred at MOI 0.001. A similar phenomenon of selection of the phage-resistant bacteria was also observed in the experiment with the STEC-contaminated cucumber after 24 h incubation with phage lysate. On the other hand, bacteriophage vB_Eco4M-7 could efficiently develop in host bacterial cells, giving plaques at similar efficiency of plating at 37, 25 and 12 °C, indicating that it can destroy STEC cells at the range of temperatures commonly used for vegetable short-term storage. These results indicate that bacteriophage vB_Eco4M-7 may be considered for its use in food protection against STEC contamination; however, caution should be taken due to the phenomenon of the appearance of phage-resistant bacteria.


Assuntos
Bacteriófagos/fisiologia , Infecções por Escherichia coli/prevenção & controle , Microbiologia de Alimentos/métodos , Escherichia coli Shiga Toxigênica/virologia , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/fisiologia
8.
Viruses ; 13(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669643

RESUMO

Phage therapy is one of main alternative option for antibiotic treatment of bacterial infections, particularly in the era of appearance of pathogenic strains revealing resistance to most or even all known antibiotics. Enterococcus faecalis is one of such pathogens causing serious human infections. In the light of high level of biodiversity of bacteriophages and specificity of phages to bacterial species or even strains, development of effective phage therapy depend, between others, on identification and characterization of a large collection of these viruses, including understanding of their interactions with host bacterial cells. Recently, isolation of molecular characterization of bacteriophage vB_EfaS-271, infecting E. faecalis strains have been reported. In this report, phage-host interactions are reported, including ability of vB_EfaS-271 to infect bacteria forming biofilms, efficiency of eliminating bacterial cells from cultures depending on multiplicity of infection (m.o.i.), toxicity of purified phage particles to mammalian cells, and efficiency of appearance of phage-resistant bacteria. The presented results indicate that vB_EfaS-271 can significantly decrease number of viable E. faecalis cells in biofilms and in liquid cultures and reveals no considerable toxicity to mammalian cells. Efficiency of formation of phage-resistant bacteria was dependent on m.o.i. and was higher when the virion-cell ratio was as high as 10 than at low (between 0.01 and 0.0001) m.o.i. values. We conclude that vB_EfaS-271 may be considered as a candidate for its further use in phage therapy.


Assuntos
Bacteriófagos/fisiologia , Enterococcus faecalis/virologia , Infecções por Bactérias Gram-Positivas/microbiologia , Bacteriófagos/genética , Biofilmes , Enterococcus faecalis/genética , Enterococcus faecalis/fisiologia , Genoma Viral , Infecções por Bactérias Gram-Positivas/terapia , Especificidade de Hospedeiro , Humanos , Terapia por Fagos
9.
Antibiotics (Basel) ; 10(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578658

RESUMO

In addition to specific antibiotic resistance, the formation of bacterial biofilm causes another level of complications in attempts to eradicate pathogenic or harmful bacteria, including difficult penetration of drugs through biofilm structures to bacterial cells, impairment of immunological response of the host, and accumulation of various bioactive compounds (enzymes and others) affecting host physiology and changing local pH values, which further influence various biological functions. In this review article, we provide an overview on the formation of bacterial biofilm and its properties, and then we focus on the possible use of phage-derived depolymerases to combat bacterial cells included in this complex structure. On the basis of the literature review, we conclude that, although these bacteriophage-encoded enzymes may be effective in destroying specific compounds involved in the formation of biofilm, they are rarely sufficient to eradicate all bacterial cells. Nevertheless, a combined therapy, employing depolymerases together with antibiotics and/or other antibacterial agents or factors, may provide an effective approach to treat infections caused by bacteria able to form biofilms.

10.
Sci Rep ; 10(1): 3743, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111934

RESUMO

The characterization of a recently isolated bacteriophage, vB_Eco4M-7, which effectively infects many, though not all, Escherichia coli O157 strains, is presented. The genome of this phage comprises double-stranded DNA, 68,084 bp in length, with a GC content of 46.2%. It contains 96 putative open reading frames (ORFs). Among them, the putative functions of only 35 ORFs were predicted (36.5%), whereas 61 ORFs (63.5%) were classified as hypothetical proteins. The genome of phage vB_Eco4M-7 does not contain genes coding for integrase, recombinase, repressors or excisionase, which are the main markers of temperate viruses. Therefore, we conclude that phage vB_Eco4M-7 should be considered a lytic virus. This was confirmed by monitoring phage lytic development by a one-step growth experiment. Moreover, the phage forms relatively small uniform plaques (1 mm diameter) with no properties of lysogenization. Electron microscopic analyses indicated that vB_Eco4M-7 belongs to the Myoviridae family. Based on mass spectrometric analyses, including the fragmentation pattern of unique peptides, 33 phage vB_Eco4M-7 proteins were assigned to annotated open reading frames. Importantly, genome analysis suggested that this E. coli phage is free of toxins and other virulence factors. In addition, a similar, previously reported but uncharacterized bacteriophage, ECML-117, was also investigated, and this phage exhibited properties similar to vB_Eco4M-7. Our results indicate that both studied phages are potential candidates for phage therapy and/or food protection against Shiga toxin-producing E. coli, as the majority of these strains belong to the O157 serotype.


Assuntos
Escherichia coli O157/virologia , Myoviridae , Fases de Leitura Aberta , Proteínas Virais/genética , Escherichia coli O157/genética , Escherichia coli O157/ultraestrutura , Myoviridae/classificação , Myoviridae/genética , Myoviridae/metabolismo , Myoviridae/ultraestrutura , Proteínas Virais/metabolismo
11.
Acta Biochim Pol ; 66(4): 589-596, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769953

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a group of pathogenic strains responsible for human infections that result in bloody diarrhea and hemorrhagic colitis, often with severe complications. The main virulence factors of STEC are Shiga toxins encoded by stx genes located in genomes of Shiga toxin-converting bacteriophages (Stx phages). These bacterial viruses are clustered in the lambdoid bacteriophages family represented by phage λ. Here, we report that expression of orf73 from the exo-xis region of the phage genome promotes the lysogenic pathway of development of λ and Φ24B phages. We demonstrated that the mutant phages with deletions of orf73 revealed higher burst size during the lytic cycle. Moreover, survival rates of E. coli infected with mutant bacteriophages were lower relative to wild-type viruses. Additionally, orf73 deletion negatively influenced the lysogenization process of E. coli host cells. We conclude that orf73 plays an important biological role in the development of lambdoid viruses, and probably it is involved in the network of molecular mechanism of the lysis-vs.-lysogenization decision.


Assuntos
Bacteriófagos/genética , Infecções por Escherichia coli/genética , Escherichia coli Shiga Toxigênica/genética , Proteínas Virais/genética , Bacteriófago lambda/genética , Bacteriófago lambda/patogenicidade , Bacteriófagos/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/virologia , Regulação Viral da Expressão Gênica/genética , Genoma/genética , Humanos , Escherichia coli Shiga Toxigênica/virologia , Fatores de Virulência/genética
12.
Viruses ; 10(10)2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314296

RESUMO

The exo-xis region of lambdoid bacteriophage genomes contains several established and potential genes that are evolutionarily conserved, but not essential for phage propagation under laboratory conditions. Nevertheless, deletion or overexpression of either the whole exo-xis region and important regulatory elements can significantly influence the regulation of phage development. This report defines specific roles for orf60a and orf61 in bacteriophage λ and Φ24B, a specific Shiga toxin-converting phage with clinical relevance. We observed that mutant phages bearing deletions of orf60a and orf61 impaired two central aspects of phage development: the lysis-versus-lysogenization decision and prophage induction. These effects were more pronounced for phage Φ24B than for λ. Surprisingly, adsorption of phage Φ24B on Escherichia coli host cells was less efficient in the absence of either orf60a or orf61. We conclude that these open reading frames (ORFs) play important, but not essential, roles in the regulation of lambdoid phage development. Although phages can propagate without these ORFs in nutrient media, we suggest that they may be involved in the regulatory network, ensuring optimization of phage development under various environmental conditions.


Assuntos
Bacteriófago lambda/crescimento & desenvolvimento , Fases de Leitura Aberta , Proteínas Virais/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Escherichia coli/genética , Escherichia coli/fisiologia , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Lisogenia , Proteínas Virais/genética , Ativação Viral
13.
Front Microbiol ; 9: 3326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697202

RESUMO

Morphological, biological, and genetic characteristics of a virulent Siphoviridae phage, named vB-EcoS-95, is reported. This phage was isolated from urban sewage. It was found to infect some Escherichia coli strains giving clear plaques. The genome of this phage is composed of 50,910 bp and contains 89 ORFs. Importantly, none of the predicted ORFs shows any similarity with known pathogenic factors that would prevent its use in medicine. Genome sequence analysis of vB-EcoS-95 revealed 74% similarity to genomic sequence of Shigella phage pSf-1. Compared to pSf-1, phage vb-EcoS-95 does not infect Shigella strains and has an efficient bacteriolytic activity against some E. coli strains. One-step growth analysis revealed that this phage has a very short latent period (4 min), and average burst size of 115 plaque forming units per cell, which points to its high infectivity of host cells and strong lytic activity. The bacteriolytic effect of vB-EcoS-95 was tested also on biofilm-producing strains. These results indicate that vB-EcoS-95 is a newly discovered E. coli phage that may be potentially used to control the formation of biofilms.

14.
Front Microbiol ; 8: 1618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890713

RESUMO

Lambdoid bacteriophages form a group of viruses that shares a common schema of genome organization and lifecycle. Some of them can play crucial roles in creating the pathogenic profiles of Escherichia coli strains. For example, Shiga toxin-producing E. coli (STEC) acquired stx genes, encoding Shiga toxins, via lambdoid prophages (Stx phages). The results obtained so far present the evidence for the relation between the exo-xis region of the phage genome and lambdoid phage development, however molecular mechanisms of activities of the exo-xis genes' products are still unknown. In view of this, we decided to determine the influence of the uncharacterized open reading frame orf63 of the exo-xis region on lambdoid phages development using recombinant prophages, λ and Stx phage Φ24B. We have demonstrated that orf63 codes for a folded protein, thus, it is a functional gene. NMR spectroscopy and analytical gel filtration were used to extend this observation further. From backbone chemical shifts, Orf63 is oligomeric in solution, likely a trimer and consistent with its small size (63 aa.), is comprised of two helices, likely intertwined to form the oligomer. We observed that the deletion of phage orf63 does not impair the intracellular lambdoid phage lytic development, however delays the time and decreases the efficiency of prophage induction and in consequence results in increased survival of E. coli during phage lytic development. Additionally, the deletion of phage orf63 negatively influences expression of the major phage genes and open reading frames from the exo-xis region during prophage induction with hydrogen peroxide. We conclude, that lambdoid phage orf63 may have specific functions in the regulation of lambdoid phages development, especially at the stage of the lysis vs. lysogenization decision. Besides, orf63 probably participates in the regulation of the level of expression of essential phage genes and open reading frames from the exo-xis region during prophage induction.

15.
Oxid Med Cell Longev ; 2016: 3578368, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798420

RESUMO

Virulence of enterohemorrhagic Escherichia coli (EHEC) strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages), present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the "bacterial altruism" and "Trojan Horse" hypotheses, which are connected to the oxidative stress, are discussed.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Estresse Oxidativo , Toxina Shiga/biossíntese , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Prófagos/metabolismo
16.
Oxid Med Cell Longev ; 2016: 8453135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798427

RESUMO

Previous studies indicated that these genetic elements could be involved in the regulation of lysogenization and prophage induction processes. The effects were dramatic in Shiga toxin-converting phage Φ24(B) after treatment with oxidative stress-inducing agent, hydrogen peroxide, while they were less pronounced in bacteriophage λ and in both phages irradiated with UV. The hydrogen peroxide-caused prophage induction was found to be RecA-dependent. Importantly, in hydrogen peroxide-treated E. coli cells lysogenic for either λ or Φ24(B), deletion of the exo-xis region resulted in a significant decrease in the levels of expression of the S.O.S. regulon genes. Moreover, under these conditions, a dramatic decrease in the levels of expression of phage genes crucial for lytic development (particularly xis, exo, N, cro, O, Q, and R) could be observed in Φ24(B)-, but not in λ-bearing cells. We conclude that genes located in the exo-xis region are necessary for efficient expression of both host S.O.S regulon in lysogenic bacteria and regulatory genes of Shiga toxin-converting bacteriophage Φ24(B).


Assuntos
Estresse Oxidativo/genética , Prófagos/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Toxina Shiga/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/metabolismo , Bacteriófago lambda/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Lisogenia/efeitos dos fármacos , Lisogenia/efeitos da radiação , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Reação em Cadeia da Polimerase , Prófagos/efeitos dos fármacos , Prófagos/efeitos da radiação , Recombinases Rec A/metabolismo , Regulon/genética , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/genética , Alinhamento de Sequência , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Raios Ultravioleta , Ativação Viral/efeitos dos fármacos , Ativação Viral/efeitos da radiação
17.
Sci Rep ; 6: 34338, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698408

RESUMO

A large scale analysis presented in this article focuses on biological and physiological variety of bacteriophages. A collection of 83 bacteriophages, isolated from urban sewage and able to propagate in cells of different bacterial hosts, has been obtained (60 infecting Escherichia coli, 10 infecting Pseudomonas aeruginosa, 4 infecting Salmonella enterica, 3 infecting Staphylococcus sciuri, and 6 infecting Enterococcus faecalis). High biological diversity of the collection is indicated by its characteristics, both morphological (electron microscopic analyses) and biological (host range, plaque size and morphology, growth at various temperatures, thermal inactivation, sensitivity to low and high pH, sensitivity to osmotic stress, survivability upon treatment with organic solvents and detergents), and further supported by hierarchical cluster analysis. By the end of the research no larger collection of phages from a single environmental source investigated by these means had been found. The finding was confirmed by whole genome analysis of 7 selected bacteriophages. Moreover, particular bacteriophages revealed unusual biological features, like the ability to form plaques at low temperature (4 °C), resist high temperature (62 °C or 95 °C) or survive in the presence of an organic solvents (ethanol, acetone, DMSO, chloroform) or detergent (SDS, CTAB, sarkosyl) making them potentially interesting in the context of biotechnological applications.


Assuntos
Bacteriófagos/isolamento & purificação , Biodiversidade , Esgotos/microbiologia , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Pressão Osmótica , Temperatura , Ensaio de Placa Viral
18.
Sci Rep ; 5: 10080, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25962117

RESUMO

A microRNA-size (20-nt long) molecule has been identified in Escherichia coli after induction of Shiga toxin-converting bacteriophage Φ24B. This small RNA, named 24B_1, is encoded in the lom-vb_24B_43 region of the phage genome, and apparently it is produced by cleavage of a larger transcript. A phage devoid of 24B_1 revealed decreased efficiency of lysogenization, quicker prophage induction after provoking the SOS response, higher efficiency of progeny phage production during the lytic cycle and less efficient adsorption on the host cells. Expression of most of phage genes was drastically increased after infection of E. coli by the Φ24BΔ24B_1 phage. Since 24B_1 may impair expression of the d_ant gene, coding for an anti-repressor, these results may explain the mechanism of regulations of the physiological processes by this small RNA due to impaired activity of the cI repressor and changed expression of vast majority of phage genes. To our knowledge, this is the first example of functional microRNA-size molecule in bacterial cells.


Assuntos
Colífagos/metabolismo , Escherichia coli/virologia , Regulação Viral da Expressão Gênica/fisiologia , MicroRNAs/biossíntese , RNA Viral/biossíntese , Toxina Shiga , Colífagos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , MicroRNAs/genética , RNA Viral/genética , Resposta SOS em Genética/genética
19.
Toxins (Basel) ; 7(9): 3727-39, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26402701

RESUMO

Shiga toxin-converting bacteriophages (Stx phages) are present as prophages in Shiga toxin-producing Escherichia coli (STEC) strains. Theses phages can be transmitted to previously non-pathogenic E. coli cells making them potential producers of Shiga toxins, as they bear genes for these toxins in their genomes. Therefore, sensitivity of Stx phage virions to various conditions is important in both natural processes of spreading of these viruses and potential prophylactic control of appearance of novel pathogenic E. coli strains. In this report we provide evidence that virions of Stx phages are significantly more sensitive to UV irradiation than bacteriophage λ. Following UV irradiation of Stx virions at the dose of 50 J/m², their infectivity dropped by 1-3 log10, depending on the kind of phage. Under these conditions, a considerable release of phage DNA from virions was observed, and electron microscopy analyses indicated a large proportion of partially damaged virions. Infection of E. coli cells with UV-irradiated Stx phages resulted in significantly decreased levels of expression of N and cro genes, crucial for lytic development. We conclude that inactivation of Stx virions caused by relatively low dose of UV light is due to damage of capsids that prevents effective infection of the host cells.


Assuntos
Bacteriófagos/efeitos da radiação , DNA Viral/isolamento & purificação , Vírion/efeitos da radiação , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Viabilidade Microbiana , Escherichia coli Shiga Toxigênica/metabolismo , Raios Ultravioleta
20.
PLoS One ; 9(10): e108233, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310402

RESUMO

Lambdoid bacteriophages serve as useful models in microbiological and molecular studies on basic biological process. Moreover, this family of viruses plays an important role in pathogenesis of enterohemorrhagic Escherichia coli (EHEC) strains, as they are carriers of genes coding for Shiga toxins. Efficient expression of these genes requires lambdoid prophage induction and multiplication of the phage genome. Therefore, understanding the mechanisms regulating these processes appears essential for both basic knowledge and potential anti-EHEC applications. The exo-xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. Recent report indicated that the Ea8.5 protein, encoded in this region, contains a newly discovered fused homeodomain/zinc-finger fold, suggesting its plausible regulatory role. Moreover, subsequent studies demonstrated that overexpression of the exo-xis region from a multicopy plasmid resulted in impaired lysogenization of E. coli and more effective induction of λ and Ф24B prophages. In this report, we demonstrate that after prophage induction, the increase in phage DNA content in the host cells is more efficient in E. coli bearing additional copies of the exo-xis region, while survival rate of such bacteria is lower, which corroborated previous observations. Importantly, by using quantitative real-time reverse transcription PCR, we have determined patterns of expressions of particular genes from this region. Unexpectedly, in both phages λ and Ф24B, these patterns were significantly different not only between conditions of the host cells infection by bacteriophages and prophage induction, but also between induction of prophages with various agents (mitomycin C and hydrogen peroxide). This may shed a new light on our understanding of regulation of lambdoid phage development, depending on the mode of lytic cycle initiation.


Assuntos
Bacteriófago lambda/genética , Bacteriófagos/genética , Regulação Viral da Expressão Gênica , Prófagos/genética , Ativação Viral/genética , Escherichia coli Êntero-Hemorrágica , Toxina Shiga/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA