Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210299, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965467

RESUMO

We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38837915

RESUMO

This paper introduces constraint-based breakpoints, a technique for designing responsive visualizations for a wide variety of screen sizes and datasets. Breakpoints in responsive visualization define when different visualization designs are shown. Conventionally, breakpoints are static, pre-defined widths, and as such do not account for changes to the visualized dataset or visualization parameters. To guarantee readability and efficient use of space across datasets, these static breakpoints would require manual updates. Constraint-based breakpoints solve this by evaluating visualization-specific constraints on the size of visual elements, overlapping elements, and the aspect ratio of the visualization and available space. Once configured, a responsive visualization with constraint-based breakpoints can adapt to different screen sizes for any dataset. We describe a framework that guides designers in creating a stack of visualization designs for different display sizes and defining constraints for each of these designs. We demonstrate constraint-based breakpoints for different data types and their visualizations: geographic data (choropleth map, proportional circle map, Dorling cartogram, hexagonal grid map, bar chart, waffle chart), network data (node-link diagram, adjacency matrix, arc diagram), and multivariate data (scatterplot, heatmap). Interactive demos and supplemental material are available at responsive-vis.github.io/breakpoints.

4.
IEEE Trans Vis Comput Graph ; 30(1): 649-660, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934634

RESUMO

This paper is a call to action for research and discussion on data visualization education. As visualization evolves and spreads through our professional and personal lives, we need to understand how to support and empower a broad and diverse community of learners in visualization. Data Visualization is a diverse and dynamic discipline that combines knowledge from different fields, is tailored to suit diverse audiences and contexts, and frequently incorporates tacit knowledge. This complex nature leads to a series of interrelated challenges for data visualization education. Driven by a lack of consolidated knowledge, overview, and orientation for visualization education, the 21 authors of this paper-educators and researchers in data visualization-identify and describe 19 challenges informed by our collective practical experience. We organize these challenges around seven themes People, Goals & Assessment, Environment, Motivation, Methods, Materials, and Change. Across these themes, we formulate 43 research questions to address these challenges. As part of our call to action, we then conclude with 5 cross-cutting opportunities and respective action items: embrace DIVERSITY+INCLUSION, build COMMUNITIES, conduct RESEARCH, act AGILE, and relish RESPONSIBILITY. We aim to inspire researchers, educators and learners to drive visualization education forward and discuss why, how, who and where we educate, as we learn to use visualization to address challenges across many scales and many domains in a rapidly changing world: viseducationchallenges.github.io.

5.
IEEE Trans Vis Comput Graph ; 27(8): 3451-3462, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32149641

RESUMO

We present and report on Design Exposition Discussion Documents (DExDs), a new means of fostering collaboration between visualization designers and domain experts in applied visualization research. DExDs are a collection of semi-interactive web-based documents used to promote design discourse: to communicate new visualization designs, and their underlying rationale, and to elicit feedback and new design ideas. Developed and applied during a four-year visual data analysis project in criminal intelligence, these documents enabled a series of visualization re-designs to be explored by crime analysts remotely - in a flexible and authentic way. The DExDs were found to engender a level of engagement that is qualitatively distinct from more traditional methods of feedback elicitation, supporting the kind of informed, iterative and design-led feedback that is core to applied visualization research. They also offered a solution to limited and intermittent contact between analyst and visualization researcher and began to address more intractable deficiencies, such as social desirability-bias, common to applied visualization projects. Crucially, DExDs conferred to domain experts greater agency over the design process - collaborators proposed design suggestions, justified with design knowledge, that directly influenced the re-redesigns. We provide context that allows the contributions to be transferred to a range of settings.

6.
IEEE Trans Vis Comput Graph ; 16(6): 890-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975125

RESUMO

This design paper presents new guidance for creating map legends in a dynamic environment. Our contribution is a set of guidelines for legend design in a visualization context and a series of illustrative themes through which they may be expressed. These are demonstrated in an applications context through interactive software prototypes. The guidelines are derived from cartographic literature and in liaison with EDINA who provide digital mapping services for UK tertiary education. They enhance approaches to legend design that have evolved for static media with visualization by considering: selection, layout, symbols, position, dynamism and design and process. Broad visualization legend themes include: The Ground Truth Legend, The Legend as Statistical Graphic and The Map is the Legend. Together, these concepts enable us to augment legends with dynamic properties that address specific needs, rethink their nature and role and contribute to a wider re-evaluation of maps as artifacts of usage rather than statements of fact. EDINA has acquired funding to enhance their clients with visualization legends that use these concepts as a consequence of this work. The guidance applies to the design of a wide range of legends and keys used in cartography and information visualization.

7.
IEEE Trans Vis Comput Graph ; 15(6): 977-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19834162

RESUMO

We explore the effects of selecting alternative layouts in hierarchical displays that show multiple aspects of large multivariate datasets, including spatial and temporal characteristics. Hierarchical displays of this type condition a dataset by multiple discrete variable values, creating nested graphical summaries of the resulting subsets in which size, shape and colour can be used to show subset properties. These 'small multiples' are ordered by the conditioning variable values and are laid out hierarchically using dimensional stacking. Crucially, we consider the use of different layouts at different hierarchical levels, so that the coordinates of the plane can be used more effectively to draw attention to trends and anomalies in the data. We argue that these layouts should be informed by the type of conditioning variable and by the research question being explored. We focus on space-filling rectangular layouts that provide data-dense and rich overviews of data to address research questions posed in our exploratory analysis of spatial and temporal aspects of property sales in London. We develop a notation ('HiVE') that describes visualisation and layout states and provides reconfiguration operators, demonstrate its use for reconfiguring layouts to pursue research questions and provide guidelines for this process. We demonstrate how layouts can be related through animated transitions to reduce the cognitive load associated with their reconfiguration whilst supporting the exploratory process.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31442986

RESUMO

We develop a new perspective on research conducted through visualization design study that emphasizes design as a method of inquiry and the broad range of knowledge-contributions achieved through it as multiple, subjective, and socially constructed. From this interpretivist position we explore the nature of visualization design study and develop six criteria for rigor. We propose that rigor is established and judged according to the extent to which visualization design study research and its reporting are INFORMED, REFLEXIVE, ABUNDANT, PLAUSIBLE, RESONANT, and TRANSPARENT. This perspective and the criteria were constructed through a four-year engagement with the discourse around rigor and the nature of knowledge in social science, information systems, and design. We suggest methods from cognate disciplines that can support visualization researchers in meeting these criteria during the planning, execution, and reporting of design study. Through a series of deliberately provocative questions, we explore implications of this new perspective for design study research in visualization, concluding that as a discipline, visualization is not yet well positioned to embrace, nurture, and fully benefit from a rigorous, interpretivist approach to design study. The perspective and criteria we present are intended to stimulate dialogue and debate around the nature of visualization design study and the broader underpinnings of the discipline.

9.
IEEE Trans Vis Comput Graph ; 14(6): 1348-55, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18988983

RESUMO

Existing treemap layout algorithms suffer to some extent from poor or inconsistent mappings between data order and visual ordering in their representation, reducing their cognitive plausibility. While attempts have been made to quantify this mismatch, and algorithms proposed to minimize inconsistency, solutions provided tend to concentrate on one-dimensional ordering. We propose extensions to the existing squarified layout algorithm that exploit the two-dimensional arrangement of treemap nodes more effectively. Our proposed spatial squarified layout algorithm provides a more consistent arrangement of nodes while maintaining low aspect ratios. It is suitable for the arrangement of data with a geographic component and can be used to create tessellated cartograms for geovisualization. Locational consistency is measured and visualized and a number of layout algorithms are compared. CIELab color space and displacement vector overlays are used to assess and emphasize the spatial layout of treemap nodes. A case study involving locations of tagged photographs in the Flickr database is described.

10.
IEEE Comput Graph Appl ; 38(6): 9-16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30668451

RESUMO

Reflection is a core method used by visualization researchers to generate knowledge from design practice. There is, however, a lack of standards to inform reflective practice and through which we can judge the quality of the reflection used in visualization research. Reflecting on this gap, we offer priorities for researchers looking to improve the use of reflection in applied visualization research.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30130220

RESUMO

We propose a new approach to the visualization design and communication process, literate visualization, based upon and extending, Donald Knuth's idea of literate programming. It integrates the process of writing data visualization code with description of the design choices that led to the implementation (design exposition). We develop a model of design exposition characterised by four visualization designer architypes: the evaluator, the autonomist, the didacticist and the rationalist. The model is used to justify the key characteristics of literate visualization: 'notebook' documents that integrate live coding input, rendered output and textual narrative; low cost of authoring textual narrative; guidelines to encourage structured visualization design and its documentation. We propose narrative schemas for structuring and validating a wide range of visualization design approaches and models, and branching narratives for capturing alternative designs and design views. We describe a new open source literate visualization environment, litvis, based on a declarative interface to Vega and Vega-Lite through the functional programming language Elm combined with markdown for formatted narrative. We informally assess the approach, its implementation and potential by considering three examples spanning a range of design abstractions: new visualization idioms; validation though visualization algebra; and feminist data visualization. We argue that the rich documentation of the design process provided by literate visualization offers the potential to improve the validity of visualization design and so benefit both academic visualization and visualization practice.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30137005

RESUMO

Applied visualization researchers often work closely with domain collaborators to explore new and useful applications of visualization. The early stages of collaborations are typically time consuming for all stakeholders as researchers piece together an understanding of domain challenges from disparate discussions and meetings. A number of recent projects, however, report on the use of creative visualization-opportunities (CVO) workshops to accelerate the early stages of applied work, eliciting a wealth of requirements in a few days of focused work. Yet, there is no established guidance for how to use such workshops effectively. In this paper, we present the results of a 2-year collaboration in which we analyzed the use of 17 workshops in 10 visualization contexts. Its primary contribution is a framework for CVO workshops that: 1) identifies a process model for using workshops; 2) describes a structure of what happens within effective workshops; 3) recommends 25 actionable guidelines for future workshops; and 4) presents an example workshop and workshop methods. The creation of this framework exemplifies the use of critical reflection to learn about visualization in practice from diverse studies and experience.

13.
IEEE Trans Vis Comput Graph ; 13(6): 1161-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17968060

RESUMO

We introduce a series of geographically weighted (GW) interactive graphics, or geowigs, and use them to explore spatial relationships at a range of scales. We visually encode information about geographic and statistical proximity and variation in novel ways through gw-choropleth maps, multivariate gw-boxplots, gw-shading and scalograms. The new graphic types reveal information about GW statistics at several scales concurrently. We impement these views in prototype software containing dynamic links and GW interactions that encourage exploration and refine them to consider directional geographies. An informal evaluation uses interactive GW techniques to consider Guerry's dataset of 'moral statistics', casting doubt on correlations originally proposed through visual analysis, revealing new local anomalies and suggesting multivariate geographic relationships. Few attempts at visually synthesising geography with multivariate statistical values at multiple scales have been reported. The geowigs proposed here provide informative representations of multivariate local variation, particularly when combined with interactions that coordinate views and result in gw-shading. We argue that they are widely applicable to area and point-based geographic data and provide a set of methods to support visual analysis using GW statistics through which the effects of geography can be explored at multiple scales.

14.
IEEE Trans Vis Comput Graph ; 13(6): 1176-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17968062

RESUMO

Exploratory visual analysis is useful for the preliminary investigation of large structured, multifaceted spatio-temporaldatasets. This process requires the selection and aggregation of records by time, space and attribute, the ability to transform data and the flexibility to apply appropriate visual encodings and interactions. We propose an approach inspired by geographical 'mashups' in which freely-available functionality and data are loosely but flexibly combined using de facto exchange standards. Our case study combines MySQL, PHP and the LandSerf GIS to allow Google Earth to be used for visual synthesis and interaction with encodings described in KML. This approach is applied to the exploration of a log of 1.42 million requests made of a mobile directory service. Novel combinations of interaction and visual encoding are developed including spatial 'tag clouds', 'tag maps', 'data dials' and multi-scale density surfaces. Four aspects of the approach are informally evaluated: the visual encodings employed, their success in the visual exploration of the dataset, the specific tools used and the 'mashup' approach. Preliminary findings will be beneficial to others considering using mashups for visualization. The specific techniques developed may be more widely applied to offer insights into the structure of multifarious spatio-temporal data of the type explored here.

15.
IEEE Trans Vis Comput Graph ; 23(1): 381-390, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875154

RESUMO

Small multiples enable comparison by providing different views of a single data set in a dense and aligned manner. A common frame defines each view, which varies based upon values of a conditioning variable. An increasingly popular use of this technique is to project two-dimensional locations into a gridded space (e.g. grid maps), using the underlying distribution both as the conditioning variable and to determine the grid layout. Using whitespace in this layout has the potential to carry information, especially in a geographic context. Yet, the effects of doing so on the spatial properties of the original units are not understood. We explore the design space offered by such small multiples with gaps. We do so by constructing a comprehensive suite of metrics that capture properties of the layout used to arrange the small multiples for comparison (e.g. compactness and alignment) and the preservation of the original data (e.g. distance, topology and shape). We study these metrics in geographic data sets with varying properties and numbers of gaps. We use simulated annealing to optimize for each metric and measure the effects on the others. To explore these effects systematically, we take a new approach, developing a system to visualize this design space using a set of interactive matrices. We find that adding small amounts of whitespace to small multiple arrays improves some of the characteristics of 2D layouts, such as shape, distance and direction. This comes at the cost of other metrics, such as the retention of topology. Effects vary according to the input maps, with degree of variation in size of input regions found to be a factor. Optima exist for particular metrics in many cases, but at different amounts of whitespace for different maps. We suggest multiple metrics be used in optimized layouts, finding topology to be a primary factor in existing manually-crafted solutions, followed by a trade-off between shape and displacement. But the rich range of possible optimized layouts leads us to challenge single-solution thinking; we suggest to consider alternative optimized layouts for small multiples with gaps. Key to our work is the systematic, quantified and visual approach to exploring design spaces when facing a trade-off between many competing criteria-an approach likely to be of value to the analysis of other design spaces.

16.
IEEE Trans Vis Comput Graph ; 23(1): 391-400, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875155

RESUMO

Fundamental to the effective use of visualization as an analytic and descriptive tool is the assurance that presenting data visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.'s 'Visual Line-up' method as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n=361) to determine the just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran's I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people's abilities to perceive differences in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to those provided in recent years by Klippel et al. (2011), Harrison et al. (2014) and Kay & Heer (2015) for correlation visualization. Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to inform geospatial tests of graphical inference.

17.
IEEE Trans Vis Comput Graph ; 23(1): 661-670, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875181

RESUMO

Time series (such as stock prices) and ensembles (such as model runs for weather forecasts) are two important types of one-dimensional time-varying data. Such data is readily available in large quantities but visual analysis of the raw data quickly becomes infeasible, even for moderately sized data sets. Trend detection is an effective way to simplify time-varying data and to summarize salient information for visual display and interactive analysis. We propose a geometric model for trend-detection in one-dimensional time-varying data, inspired by topological grouping structures for moving objects in two- or higher-dimensional space. Our model gives provable guarantees on the trends detected and uses three natural parameters: granularity, support-size, and duration. These parameters can be changed on-demand. Our system also supports a variety of selection brushes and a time-sweep to facilitate refined searches and interactive visualization of (sub-)trends. We explore different visual styles and interactions through which trends, their persistence, and evolution can be explored.

18.
IEEE Trans Vis Comput Graph ; 22(1): 599-608, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26390471

RESUMO

Comparing multiple variables to select those that effectively characterize complex entities is important in a wide variety of domains - geodemographics for example. Identifying variables that correlate is a common practice to remove redundancy, but correlation varies across space, with scale and over time, and the frequently used global statistics hide potentially important differentiating local variation. For more comprehensive and robust insights into multivariate relations, these local correlations need to be assessed through various means of defining locality. We explore the geography of this issue, and use novel interactive visualization to identify interdependencies in multivariate data sets to support geographically informed multivariate analysis. We offer terminology for considering scale and locality, visual techniques for establishing the effects of scale on correlation and a theoretical framework through which variation in geographic correlation with scale and locality are addressed explicitly. Prototype software demonstrates how these contributions act together. These techniques enable multiple variables and their geographic characteristics to be considered concurrently as we extend visual parameter space analysis (vPSA) to the spatial domain. We find variable correlations to be sensitive to scale and geography to varying degrees in the context of energy-based geodemographics. This sensitivity depends upon the calculation of locality as well as the geographical and statistical structure of the variable.

19.
IEEE Trans Vis Comput Graph ; 22(9): 2200-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26584493

RESUMO

We present an efficient technique for topology-preserving map deformation and apply it to the visualization of dissimilarity data in a geographic context. Map deformation techniques such as value-by-area cartograms are well studied. However, using deformation to highlight (dis)similarity between locations on a map in terms of their underlying data attributes is novel. We also identify an alternative way to represent dissimilarities on a map through the use of visual overlays. These overlays are complementary to deformation techniques and enable us to assess the quality of the deformation as well as to explore the design space of blending the two methods. Finally, we demonstrate how these techniques can be useful in several-quite different-applied contexts: travel-time visualization, social demographics research and understanding energy flowing in a wide-area power-grid.

20.
IEEE Trans Vis Comput Graph ; 20(12): 2171-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26356931

RESUMO

We reflect on a four-year engagement with transport authorities and others involving a large dataset describing the use of a public bicycle-sharing scheme. We describe the role visualization of these data played in fostering engagement with policy makers, transport operators, the transport research community, the museum and gallery sector and the general public. We identify each of these as `channels'--evolving relationships between producers and consumers of visualization--where traditional roles of the visualization expert and domain expert are blurred. In each case, we identify the different design decisions that were required to support each of these channels and the role played by the visualization process. Using chauffeured interaction with a flexible visual analytics system we demonstrate how insight was gained by policy makers into gendered spatio-temporal cycle behaviors, how this led to further insight into workplace commuting activity, group cycling behavior and explanations for street navigation choice. We demonstrate how this supported, and was supported by, the seemingly unrelated development of narrative-driven visualization via TEDx, of the creation and the setting of an art installation and the curating of digital and physical artefacts. We assert that existing models of visualization design, of tool/technique development and of insight generation do not adequately capture the richness of parallel engagement via these multiple channels of communication. We argue that developing multiple channels in parallel opens up opportunities for visualization design and analysis by building trust and authority and supporting creativity. This rich, non-sequential approach to visualization design is likely to foster serendipity, deepen insight and increase impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA