Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cereb Cortex ; 25(11): 4048-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24904072

RESUMO

Environmental enrichment is a powerful way to stimulate brain and behavioral plasticity. However the required exposure duration to reach such changes has not been substantially analyzed. We aimed to assess the time-course of appearance of the beneficial effects of enriched environment. Thus, different behavioral tests and neurobiological parameters (such as neurogenesis, brain monoamines levels, and stress-related hormones) were concomitantly realized after different durations of enriched environment (24 h, 1, 3, or 5 weeks). While short enrichment exposure (24 h) was sufficient to improve object recognition memory performances, a 3-week exposure was required to improve aversive stimulus-based memory performances and to reduce anxiety-like behavior; effects that were not observed with longer duration. The onset of behavioral changes after a 3-week exposure might be supported by higher serotonin levels in the frontal cortex, but seems independent of neurogenesis phenomenon. Additionally, the benefit of 3-week exposure on memory was not observed 3 weeks after cessation of enrichment. Thus, the 3-week exposure appears as an optimal duration in order to induce the most significant behavioral effects and to assess the underlying mechanisms. Altogether, these results suggest that the duration of exposure is a keystone of the beneficial behavioral and neurobiological effects of environmental enrichment.


Assuntos
Encéfalo/fisiologia , Meio Ambiente , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Monoaminas Biogênicas/metabolismo , Encéfalo/citologia , Bromodesoxiuridina , Proliferação de Células/fisiologia , Corticosterona/sangue , Comportamento Exploratório/fisiologia , Elevação dos Membros Posteriores , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Transtornos do Humor/fisiopatologia , Natação , Fatores de Tempo
2.
Neuroimage ; 102 Pt 2: 249-61, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25108180

RESUMO

The delayed appearance of motor symptoms in PD poses a crucial challenge for early detection of the disease. We measured the binding potential of the selective dopamine active transporter (DAT) radiotracer [(11)C]PE2I in MPTP-treated macaque monkeys, thus establishing a detailed profile of the nigrostriatal DA status following MPTP intoxication and its relation to induced motor and non-motor symptoms. Clinical score and cognitive performance were followed throughout the study. We measured longitudinally in vivo the non-displaceable binding potential to DAT in premotor, motor-recovered (i.e. both non-symptomatic) and symptomatic MPTP-treated monkeys. Results show an unexpected and pronounced dissociation between clinical scores and [(11)C]PE2I-BP(ND) during the premotor phase i.e. DAT binding in the striatum of premotor animals was increased around 20%. Importantly, this broad increase of DAT binding in the caudate, ventral striatum and anterior putamen was accompanied by i) deteriorated cognitive performance, showing a likely causal role of the observed hyperdopaminergic state (Cools, 2011; Cools and D'Esposito, 2011) and ii) an asymmetric decrease of DAT binding at a focal point of the posterior putamen, suggesting that increased DAT is one of the earliest, intrinsic compensatory mechanisms. Following spontaneous recovery from motor deficits, DAT binding was greatly reduced as recently shown in-vivo with other radiotracers (Blesa et al., 2010, 2012). Finally, high clinical scores were correlated to considerably low levels of DAT only after the induction of a stable parkinsonian state. We additionally show that the only striatal region which was significantly correlated to the degree of motor impairments is the ventral striatum. Further research on this period should allow better understanding of DA compensation at premature stages of PD and potentially identify new diagnosis and therapeutic index.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Intoxicação por MPTP/metabolismo , Animais , Radioisótopos de Carbono/farmacocinética , Cognição/efeitos dos fármacos , Cognição/fisiologia , Corpo Estriado/diagnóstico por imagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Feminino , Estudos Longitudinais , Intoxicação por MPTP/diagnóstico por imagem , Macaca fascicularis , Nortropanos/farmacocinética , Tomografia por Emissão de Pósitrons
3.
Adv Sci (Weinh) ; 9(10): e2103827, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35137562

RESUMO

Parkinson's disease (PD) evolves over an extended and variable period in humans; years prior to the onset of classical motor symptoms, sleep and biological rhythm disorders develop, significantly impacting the quality-of-life of patients. Circadian-rhythm disorders are accompanied by mild cognitive deficits that progressively worsen with disease progression and can constitute a severe burden for patients at later stages. The gold-standard 6-methyl-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) macaque model of PD recapitulates the progression of motor and nonmotor symptoms over contracted periods of time. Here, this multidisciplinary/multiparametric study follows, in five animals, the steady progression of motor and nonmotor symptoms and describes their reversal following grafts of neural precursors in diverse functional domains of the basal ganglia. Results show unprecedented recovery from cognitive symptoms in addition to a strong clinical motor recuperation. Both motor and cognitive recovery and partial circadian rhythm recovery correlate with the degree of graft integration, and in a subset of animals, with in vivo levels of striatal dopaminergic innervation and function. The present study provides empirical evidence that integration of neural precursors following transplantation efficiently restores function at multiple levels in parkinsonian nonhuman primates and, given interindividuality of disease progression and recovery, underlines the importance of longitudinal multidisciplinary assessments in view of clinical translation.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Animais , Disfunção Cognitiva/etiologia , Dopamina , Humanos , Estudos Longitudinais , Macaca
4.
J Neurochem ; 113(6): 1459-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20345766

RESUMO

The present experiments aimed at understanding the functional link between dopamine (DA) and glutamate (GLU) during the compensatory processes taking place after partial DA denervation. Lesion of the lateral part of substantia nigra in rats using 6-hydroxydopamine resulted in DA denervation of the lateral region of the ipsilateral caudate/putamen complex (CPc) whereas the medial CPc was spared. In vivo voltammetry revealed a large increase of extracellular dopamine (DA(ext)) in the medial CPc both ipsilateral and contralateral to the lesion. In addition, in vivo microdialysis and HPLC-ED revealed a concomitant increase of extracellular glutamate (GLU(ext)) in the ipsilateral medial CPc. Post-lesion chronic treatment with the putative neuroprotectors amantadine, memantine, and riluzole counteracted the tonic increases of DA(ext) and GLU(ext), revealing a possible role of GLU neurotransmission in the DA over-expression. Finally, acute low doses of GBR12909 had no effect on the DA(ext) in sham- operated animals, but dramatically increased DA(ext) in lesioned animals. The data suggest that a partial unilateral nigral lesion induces a bilateral increase of DA turn-over in the non-denervated striata through GLU afferences to the DA terminals.


Assuntos
Lesões Encefálicas/patologia , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Ácido Glutâmico/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Substância Negra , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Aminoácidos/metabolismo , Animais , Lesões Encefálicas/induzido quimicamente , Cromatografia Líquida de Alta Pressão/métodos , Dopaminérgicos/farmacologia , Eletroquimioterapia/métodos , Ácido Homovanílico/metabolismo , Masculino , Microdiálise/métodos , Oxidopamina , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar
5.
PLoS One ; 9(1): e86240, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465981

RESUMO

Disturbances of the daily sleep/wake cycle are common non-motor symptoms of Parkinson's disease (PD). However, the impact of dopamine (DA) depletion on circadian rhythms in PD patients or non-human primate (NHP) models of the disorder have not been investigated. We evaluated alterations of circadian rhythms in NHP following MPTP lesion of the dopaminergic nigro-striatal system. DA degeneration was assessed by in vivo PET ([(11)C]-PE2I) and post-mortem TH and DAT quantification. In a light∶dark cycle, control and MPTP-treated NHP both exhibit rest-wake locomotor rhythms, although DA-depleted NHP show reduced amplitude, decreased stability and increased fragmentation. In all animals, 6-sulphatoxymelatonin peaks at night and cortisol in early morning. When the circadian system is challenged by exposure to constant light, controls retain locomotor rest-wake and hormonal rhythms that free-run with stable phase relationships whereas in the DA-depleted NHP, locomotor rhythms are severely disturbed or completely abolished. The amplitude and phase relations of hormonal rhythms nevertheless remain unaltered. Use of a light-dark masking paradigm shows that expression of daily rest-wake activity in MPTP monkeys requires the stimulatory and inhibitory effects of light and darkness. These results suggest that following DA lesion, the central clock in the SCN remains intact but, in the absence of environmental timing cues, is unable to drive downstream rhythmic processes of striatal clock gene and dopaminergic functions that control locomotor output. These findings suggest that the circadian component of the sleep-wake disturbances in PD is more profoundly affected than previously assumed.


Assuntos
Ritmo Circadiano , Dopamina/deficiência , Transtornos Parkinsonianos/fisiopatologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Atividade Motora , Neuropeptídeos/metabolismo , Orexinas , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Fotoperíodo , Retina/metabolismo , Retina/patologia , Opsinas de Bastonetes/metabolismo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA