RESUMO
UTP23 (UTP23 small subunit processome component) plays a pivotal role in the intricate processing and maturation of the small subunit of ribosomes within the nucleolus. In cases of nucleolar stress, such as those observed in certain tumor cells, the aberrant nucleolar organization and structure can lead to the translocation of nucleolar proteins into the nucleus or cytoplasm, consequently impacting the physiological processes of the tumor cells through non-ribosome-related functions. Our investigation revealed altered localization of UTP23 protein in colorectal cancer clinical tissue samples. Upon analyzing UTP23 expression and its correlation with patient prognosis in a cohort of 143 colorectal cancer patients, the result suggested that high cytoplasmic expression pattern of UTP23 was occured in early-stage metastasis-free colorectal cancer and was significantly associated with poor prognosis. Furthermore, we demonstrated that cytoplasmic expression of UTP23 significantly promoted the metastatic and invasive capabilities of colorectal cancer cells, which was not showed in the nucleollcalised UTP23. Intriguingly, mass spectrometry result suggested that KRT5 bind to UTP23 and showed a regulatory influence on UTP23 metastatic potential in colorectal cancer cells. Conclusively, our study demonstrated that the localization of UTP23 play a key role in colorectal cancer metastatic progression, which may serve as a novel prognostic indicator.
Assuntos
Neoplasias Colorretais , Proteínas Nucleares , Ribossomos , Humanos , Neoplasias Colorretais/patologia , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismoRESUMO
Our previous study demonstrated that tumor-suppressor circular RNAs (circRNAs) can be specifically secreted outside of colorectal cancer (CRC) cells within exosomes to maintain tumor cell fitness. However, whether tumor-driving circRNAs can be specifically retained in cells to facilitate tumor progression remains unknown. In this study, circRNA-seq showed that circSKA3 was significantly upregulated in CRC tissues but downregulated in serum samples from CRC patients. In addition, circSKA3 promoted CRC progression in vitro and in vivo and was retained in CRC cells via a specific cellmotif element. Interestingly, the cellmotif element was also the site of interaction of circSKA3 with SLUG, which inhibited SLUG ubiquitination degradation and promoted CRC epithelial-mesenchymal transition (EMT). Moreover, FUS was identified as a key circularization regulator of circSKA3 that bound to the key element. Finally, we designed and synthesized specific antisense oligonucleotides (ASOs) targeting circularization and cellmotif elements, which repressed circSKA3 expression, abolished the SLUG-circSKA3 interaction, and further inhibited CRC EMT and metastasis in vitro and in vivo.
Assuntos
Neoplasias Colorretais , RNA Circular , Humanos , Neoplasias Colorretais/patologia , Genes Supressores de Tumor , RNA Circular/genética , RNA Circular/metabolismo , UbiquitinaçãoRESUMO
Premature ovarian insufficiency (POI) is a heterogeneous and multifactorial disorder. In recent years, there has been an increasing interest in research on the pathogenesis and treatment of POI, owing to the implementation of the second-child policy in China. Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is an RNA-binding protein that can bind to specific RNA sequences. CPEB3 can bind to and affect the expression, cellular location, and stability of target RNAs. Cpeb3 is highly expressed in the ovary; however, its functions remain unknown. In this study, Cpeb3-mutant mice were used to characterize the physiological functions of CPEB3. Cpeb3-mutant female mice manifested signs of gradual loss of ovarian follicles, ovarian follicle development arrest, increased follicle atresia, and subfertility with a phenotype analogous to POI in women. Further analysis showed that granulosa cell proliferation was inhibited and apoptosis was markedly increased in Cpeb3-mutant ovaries. In addition, the expression of Gdf9, a potential target of CPEB3, was decreased in Cpeb3-mutant ovaries and oocytes. Altogether, these results reveal that CPEB3 is essential for ovarian follicle development and female fertility as it regulates the expression of Gdf9 in oocytes, disruption of which leads to impaired ovarian follicle development and POI.
Assuntos
Fertilidade/genética , Células da Granulosa/metabolismo , Mutação , Insuficiência Ovariana Primária/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Animais , Apoptose/genética , Sistemas CRISPR-Cas , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Fator 9 de Diferenciação de Crescimento/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oócitos/metabolismo , Fenótipo , Gravidez , Insuficiência Ovariana Primária/genética , Proteínas de Ligação a RNA/genéticaRESUMO
Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein. We had reported that CPEB3 is involved in hepatocellular carcinoma (HCC) progression. However, the underlying mechanisms of CPEB3 in HCC remain unclear. In this study, we firstly performed RNA immunoprecipitation to uncover the transcriptome-wide CPEB3-bound mRNAs (CPEB3 binder) in HCC. Bioinformatic analysis indicates that CPEB3 binders are closely related to cancer progression, especially HCC metastasis. Further studies confirmed that metadherin (MTDH) is a direct target of CPEB3. CPEB3 can suppress the translation of MTDH mRNA in vivo and in vitro. Besides, luciferase assay demonstrated that CPEB3 interacted with 3'-untranslated region of MTDH mRNA and inhibited its translation. Subsequently, CPEB3 inhibited the epithelial-mesenchymal transition and metastasis of HCC cells through post-transcriptional regulation of MTDH. In addition, cpeb3 knockout mice are more susceptible to carcinogen-induced hepatocarcinogenesis and subsequent lung metastasis. Our results also indicated that CPEB3 was a good prognosis marker, which is downregulated in HCC tissue. In conclusion, our results demonstrated that CPEB3 played an important role in HCC progression and targeting CPEB3-mediated mRNA translation might be a favorable therapeutic approach.
Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismoRESUMO
Heme oxygenase-1 (HO-1) plays an important role in the progression of several malignancies including breast cancer. However, its role in breast cancer metastasis is still ambiguous. In this study, we observed the effect of HO-1 on mouse mammary carcinoma metastasis using the in vivo tumor metastasis model. Our results revealed that overexpression of HO-1 strongly inhibits the lung metastasis of 4T1 cells. In in vitro analysis, associated indices for epithelial-mesenchymal transition (EMT), migration, and proliferation of 4T1 cells were evaluated. The results show that HO-1 inhibits EMT, migration, and proliferation of 4T1 cells. In addition, the Notch1/Slug pathway is found to mediate an antimetastasis role of HO-1 in mouse mammary carcinoma. In conclusion, since HO-1/Notch1/Slug axis plays an important role in breast cancer metastasis, induction of HO-1 could be used as a potential therapeutic strategy for breast cancer treatment.
Assuntos
Heme Oxigenase-1/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Heme Oxigenase-1/genética , Xenoenxertos , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Receptor Notch1/genéticaRESUMO
Myeloid-derived suppressor cells (MDSCs) contribute to immune activity suppression and promote the tumor progression. Elimination of MDSCs is a promising cancer therapeutic strategy, and some chemotherapeutic agents have been reported to hamper tumor progression by suppressing MDSCs. Juglone has been showed to exert a direct cytotoxic effect on tumor cells. However, the effect of juglone on MDSCs and anti-tumor immune statue has remained unexplored. In our study, we observed that juglone suppressed tumor growth and metastasis markedly, and the tumor growth suppression in immunocompetent mice was more drastic than that in immunodeficient mice. Juglone reduced the accumulation of MDSCs and increased IFN-γ production by CD8+ T cells. Consistently, juglone affected myeloid cells differentiation and maturation, impairing the immunosuppressive functions of MDSCs. Moreover, juglone down-regulated the level of IL-1ß which was mediating accumulation of MDSCs. In addition, juglone inhibited 5FU-induced liver injury in a colorectal carcinoma-bearing mice model. Thus, our work suggests that the anti-tumor effect of juglone is mediated, at least in part, by eliminating accumulation of MDSCs.
Assuntos
Antineoplásicos/farmacologia , Células Supressoras Mieloides/efeitos dos fármacos , Naftoquinonas/farmacologia , Neoplasias/imunologia , Animais , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fluoruracila/efeitos adversos , Interferon gama/imunologia , Interleucina-1beta/imunologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Naftoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologiaRESUMO
BACKGROUND: Cell adhesion molecules (CADMs) comprise of a protein family whose functions include maintenance of cell polarity and tumor suppression. Hypo-expression of CADM2 gene expression has been observed in several cancers including hepatocellular carcinoma (HCC). However, the role and mechanisms of CADM2 in HCC remain unclear. METHODS: The expression of CADM2 and miRNA-10b (miR-10b) in HCC tissues and cell lines were detected using real-time PCR and Western blotting. Immunofluorescence was used to detect Epithelial-mesenchymal transition (EMT) progression in HCC cell lines. Dual-luciferase reporter assay was used to determine miR-10b binding to CADM2 3'UTR. Wound healing assay and Transwell assay were performed to examine the migration and invasion of HCC cells. RESULTS: We report the effect of CADM2 as a tumor suppressor in HCC. Firstly, we confirmed that CADM2 expression was significantly down regulated in HCC tissues compared to normal tissues according to TCGA data analysis and fresh HCC sample detection. Secondly, overexpression of CADM2 could inhibit EMT process, migratory and invasion ability of HCC cells. Furthermore, the results indicated that CADM2 is a direct target of miR-10b in HCC cells and miR-10b/CADM2 modulates EMT process and migration ability via focal adhesion kinase (FAK) /AKT signaling pathway in HCC. CONCLUSIONS: Our study demonstrates that miR-10b-CADM2-FAK/AKT axis plays an important role in HCC metastasis, which might be a novel potential therapeutic option for HCC treatment.