RESUMO
The bacterial peptidoglycan layer forms a complex mesh-like structure that surrounds the cell, imparting rigidity to withstand cytoplasmic turgor and the ability to tolerate stress. As peptidoglycan has been the target of numerous clinically successful antimicrobials such as penicillin, the biosynthesis, remodeling and recycling of this polymer has been the subject of much interest. Herein, we review recent advances in the understanding of peptidoglycan biosynthesis and remodeling in a variety of different organisms. In order for bacterial cells to grow and divide, remodeling of cross-linked peptidoglycan is essential hence, we also summarize the activity of important peptidoglycan hydrolases and how their functions differ in various species. There is a growing body of evidence highlighting complex regulatory mechanisms for peptidoglycan metabolism including protein interactions, phosphorylation and protein degradation and we summarize key recent findings in this regard. Finally, we provide an overview of peptidoglycan recycling and how components of this pathway mediate resistance to drugs. In the face of growing antimicrobial resistance, these recent advances are expected to uncover new drug targets in peptidoglycan metabolism, which can be used to develop novel therapies.
Assuntos
Bactérias/metabolismo , Peptidoglicano/metabolismo , Bactérias/classificação , Bactérias/citologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/química , Fosforilação , Mapas de Interação de Proteínas , Especificidade da Espécie , beta-Lactamases/genética , beta-Lactamases/metabolismoRESUMO
Disruption of peptidoglycan (PG) biosynthesis in the bacterial cell wall by ß-lactam antibiotics has transformed therapeutic options for bacterial infections. These antibiotics target the transpeptidase domains in penicillin binding proteins (PBPs), which can be classified into high and low molecular weight (LMW) counterparts. While the essentiality of the former has been extensively demonstrated, the physiological roles of LMW PBPs remain poorly understood. Herein, we review the function of LMW PBPs, ß-lactamases and ld-transpeptidases (Ldts) in pathogens associated with respiratory tract infections. More specifically, we explore their roles in mediating ß-lactam resistance. Using a comparative genomics approach, we identified a high degree of genetic redundancy for LMW PBPs which retain the motifs, SxxN, SxN and KTG required for catalytic activity. Differences in domain architecture suggest distinct physiological roles, possibly related to bacterial cell cycle and/or adaptation to various environmental conditions. Many of the LMW PBPs play an important role in ß-lactam resistance either through mutation or variation in abundance. In all of the bacterial genomes assessed, at least one ß-lactamase homologue is present, suggesting that enzymatic degradation of ß-lactams is a highly conserved resistance mechanism. Furthermore, the presence of Ldt homologues in the majority of species surveyed suggests that alternative PG crosslinking may further mediate ß-lactam drug resistance. A deeper understanding of the interplay between these different mechanisms of ß-lactam resistance will provide a framework for new therapeutics, which are urgently required given the rapid emergence of antimicrobial resistance. © 2018 IUBMB Life, 70(9):855-868, 2018.
Assuntos
Aminoaciltransferases/metabolismo , Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Infecções Respiratórias/metabolismo , Resistência beta-Lactâmica , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Humanos , Peso Molecular , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologiaRESUMO
Resuscitation-promoting factors (Rpfs) have previously been shown to act as growth-stimulatory molecules via their lysozyme-like activity on peptidoglycan in the bacterial cell wall. In this study, we investigated the ability of Mycobacterium smegmatis strains lacking rpf genes to form biofilms and tested their susceptibilities to cell wall-targeting agents. M. smegmatis contains four distinct rpf homologues, namely, MSMEG_5700 (rpfA), MSMEG_5439 (rpfB), MSMEG_4640 (rpfE2), and MSMEG_4643 (rpfE). During axenic growth of the wild-type strain, all four mRNA transcripts were expressed to various degrees, but the expression of MSMEG_4643 was significantly greater during exponential growth. Similarly, all rpf mRNA transcripts could be detected in biofilms grown for 7, 14, and 28 days, with MSMEG_4643 expressed at the highest abundance after 7 days. In-frame unmarked deletion mutants (single and combinatorial) were generated and displayed altered colony morphologies and the inability to form typical biofilms. Moreover, any strain lacking rpfA and rpfB simultaneously exhibited increased susceptibility to rifampin, vancomycin, and SDS. Exogenous Rpf supplementation in the form of culture filtrate failed to restore biofilm formation. Liquid chromatography-mass spectrometry (LC-MS) analysis of peptidoglycan (PG) suggested a reduction in 4-3 cross-linked PG in the ΔrpfABEE2 mutant strain. In addition, the level of PG-repeat units terminating in 1,6-anhydroMurNAc appeared to be significantly reduced in the quadruple rpf mutant. Collectively, our data have shown that Rpfs play an important role in biofilm formation, possibly through alterations in PG cross-linking and the production of signaling molecules.IMPORTANCE The cell wall of pathogenic mycobacteria is composed of peptidoglycan, arabinogalactan, mycolic acids, and an outer capsule. This inherent complexity renders it resistant to many antibiotics. Consequently, its biosynthesis and remodeling during growth directly impact viability. Resuscitation-promoting factors (Rpfs), enzymes with lytic transglycosylase activity, have been associated with the revival of dormant cells and subsequent resumption of vegetative growth. Mycobacterium smegmatis, a soil saprophyte and close relative of the human pathogen Mycobacterium tuberculosis, encodes four distinct Rpfs. Herein, we assessed the relationship between Rpfs and biofilm formation, which is used as a model to study drug tolerance and bacterial signaling in mycobacteria. We demonstrated that progressive deletion of rpf genes hampered the development of biofilms and reduced drug tolerance. These effects were accompanied by a reduction in muropeptide production and altered peptidoglycan cross-linking. Collectively, these observations point to an important role for Rpfs in mycobacterial communication and drug tolerance.
Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Parede Celular/química , Citocinas/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/genética , Peptidoglicano/genética , Antibacterianos/farmacologia , Parede Celular/genética , Deleção de Genes , Testes de Sensibilidade Microbiana , Ácidos Murâmicos/química , Mycobacterium smegmatis/metabolismo , RNA Mensageiro/genética , Rifampina/farmacologia , Dodecilsulfato de Sódio/farmacologia , Vancomicina/farmacologiaRESUMO
BACKGROUND: Mycobacteria comprise diverse species including non-pathogenic, environmental organisms, animal disease agents and human pathogens, notably Mycobacterium tuberculosis. Considering that the mycobacterial cell wall constitutes a significant barrier to drug penetration, the aim of this study was to conduct a comparative genomics analysis of the repertoire of enzymes involved in peptidoglycan (PG) remodelling to determine the potential of exploiting this area of bacterial metabolism for the discovery of new drug targets. RESULTS: We conducted an in silico analysis of 19 mycobacterial species/clinical strains for the presence of genes encoding resuscitation promoting factors (Rpfs), penicillin binding proteins, endopeptidases, L,D-transpeptidases and N-acetylmuramoyl-L-alanine amidases. Our analysis reveals extensive genetic multiplicity, allowing for classification of mycobacterial species into three main categories, primarily based on their rpf gene complement. These include the M. tuberculosis Complex (MTBC), other pathogenic mycobacteria and environmental species. The complement of these genes within the MTBC and other mycobacterial pathogens is highly conserved. In contrast, environmental strains display significant genetic expansion in most of these gene families. Mycobacterium leprae retains more than one functional gene from each enzyme family, underscoring the importance of genetic multiplicity for PG remodelling. Notably, the highest degree of conservation is observed for N-acetylmuramoyl-L-alanine amidases suggesting that these enzymes are essential for growth and survival. CONCLUSION: PG remodelling enzymes in a range of mycobacterial species are associated with extensive genetic multiplicity, suggesting functional diversification within these families of enzymes to allow organisms to adapt.
Assuntos
Variação Genética , Mycobacterium/enzimologia , Mycobacterium/genética , Peptidoglicano/metabolismo , Biologia Computacional , Sequência Conservada , Microbiologia Ambiental , Genoma Bacteriano , Humanos , Mycobacterium/isolamento & purificação , Infecções por Mycobacterium/microbiologiaRESUMO
Wildflower is a cluster O mycobacteriophage with a siphoviral morphotype that displays lytic activity in Mycobacterium smegmatis. It was isolated from soil in Johannesburg, South Africa. The double-stranded genome consists of 69,364 base pairs with a GC content of 65.5% encoding 121 predicted open reading frames.
RESUMO
Integrating whole genome sequencing (WGS) of the Mycobacterium tuberculosis complex into routine care, surveillance, and research in high tuberculosis burden settings remains challenging due to limited resources and skills. While technological platforms for scaling WGS are emerging, scaling wet lab and analytic components often depends on partnerships where such skills have been established. To address this, a virtual training program was developed. Over 12 weeks, 21 trainees from five Southern African institutes engaged in learning from curated theoretical content and interactive virtual meetings with experienced instructors. The training program, developed by a diverse team of experts in molecular biology, biomedical research, microbiology, and tuberculosis research, provided comprehensive coverage aligned with the latest advancements. Teaching strategies included interactive mentor-led sessions and real-time feedback, together with facilitated knowledge exchange and understanding. The virtual training program yielded several successes. Of note, trainees submitted three scientific articles for peer review, based on their acquired knowledge and its application in research. The program also fostered collaborations on Mycobacterium tuberculosis WGS among participants, showcasing the potential for networking and future joint projects. While the virtual training program encountered challenges related to the pandemic, limited resources, trainee engagement, and language barriers, these were creatively mitigated. To improve future training sessions, a platform assessing participant engagement and information retention is recommended. Wider collaborative efforts among experts and institutions in collating resources will lead to more comprehensive training programs. Addressing challenges such as internet connectivity issues and language barriers is crucial for ensuring inclusivity and enhancing the overall learning experience. In conclusion, the virtual training program successfully provided knowledge and skill training in WGS to trainees, leading to scientific article submissions and collaborations. Furthermore, content creators benefited from improved science communication and training opportunities.
RESUMO
Lopsy is a siphovirus mycobacteriophage that is capable of lytic infection in Mycobacterium smegmatis. It is classified as a subcluster B1 mycobacteriophage and was isolated from soil in Estcourt, South Africa. The 68,542-bp double-stranded DNA genome is circularly permuted, has a GC content of 66.4%, and is predicted to contain 98 genes.
RESUMO
Azrael100, a cluster V siphoviral mycobacteriophage, was isolated from a garden in Johannesburg, South Africa. It can infect and lyse Mycobacterium smegmatis mc2155. The double-stranded DNA genome contains 78,063 base pairs with a GC content of 56.9%, with 141 predicted open reading frames, 23 tRNAs, and one tmRNA.
RESUMO
Ongoing SARS-CoV-2 infections are driven by the emergence of various variants, with differential propensities to escape immune containment. Single nucleotide polymorphisms (SNPs) in the RNA genome result in altered protein structures and when these changes occur in the S-gene, encoding the spike protein, the ability of the virus to penetrate host cells to initiate an infection can be significantly altered. As a result, vaccine efficacy and prior immunity may be diminished, potentially leading to new waves of infection. Early detection of SARS-CoV-2 variants using a rapid and scalable approach will be paramount for continued monitoring of new infections. In this study, we developed minor groove-binding (MGB) probe-based qPCR assays targeted to specific SNPs in the S-gene, which are present in variants of concern (VOC), namely the E484K, N501Y, G446S and D405N mutations. A total of 95 archived SARS-CoV-2 positive clinical specimens collected in Johannesburg, South Africa between February 2021 and March 2022 were assessed using these qPCR assays. To independently confirm SNP detection, Sanger sequencing of the relevant region in the S-gene were performed. Where a PCR product could be generated and sequenced, qPCR assays were 100% concordant highlighting the robustness of the approach. These assays, and the approach described, offer the opportunity for easy detection and scaling of targeted detection of variant-defining SNPs in the clinical setting.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Polimorfismo de Nucleotídeo Único , África do Sul , MutaçãoRESUMO
Introduction: Oral and/or tongue swabs have demonstrated ability to detect Mycobacterium tuberculosis (Mtb) in adults with pulmonary tuberculosis (TB). Swabs provide useful alternative specimens for diagnosis of TB using molecular assays however, the diagnostic pickup by culture requires further improvement and development. Several studies identified the presence of differentially culturable tubercle bacilli (DCTB) populations in a variety of clinical specimens. These organisms do not grow in routine laboratory media and require growth factors in the form of culture filtrate (CF) from logarithmic phase cultures of Mtb H37Rv. Methods: Herein, we compared the diagnostic performance of sputum and tongue swabs using Mycobacterial Growth Indicator Tube (MGIT) assays, Auramine smear, GeneXpert and DCTB assays supplemented with or without CF. Results: From 89 eligible participants, 83 (93%), 66 (74%) and 79 (89%) were sputum positive by MGIT, smear and GeneXpert, respectively. The corresponding tongue swabs displayed a lower sensitivity with 39 (44%), 2 (2.0%) and 18 (20%) participants respectively for the same tests. We aimed to improve the diagnostic yield by utilizing DCTB assays. Sputum samples were associated with a higher positivity rate for CF-augmented DCTB at 82/89 (92%) relative to tongue swabs at 36/89 (40%). Similarly, sputum samples had a higher positivity rate for DCTB populations that were CF-independent at 64/89 (72%) relative to tongue swabs at 26/89 (29%). DCTB positivity increased significantly, relative to MGIT culture, for tongue swabs taken from HIV-positive participants. We next tested whether the use of an alternative smear stain, DMN-Trehalose, would improve diagnostic yield but noted no substantial increase. Discussion: Collectively, our data show that while tongue swabs yield lower bacterial numbers for diagnostic testing, the use of growth supplementation may improve detection of TB particularly in HIV-positive people but this requires further interrogation in larger studies.
Assuntos
Bacillus , Infecções por HIV , Lacticaseibacillus casei , Mycobacterium tuberculosis , Tuberculose Pulmonar , Adulto , Humanos , Tuberculose Pulmonar/diagnóstico , Firmicutes , Infecções por HIV/complicações , Infecções por HIV/diagnósticoRESUMO
With the onset of COVID-19, the development of ex vivo laboratory models became an urgent priority to study host-pathogen interactions in response to the pandemic. In this study, we aimed to establish an ex vivo mucosal tissue explant challenge model for studying SARS-CoV-2 infection and replication. Nasal or oral tissue samples were collected from eligible participants and explants generated from the tissue were infected with various SARS-CoV-2 strains, including IC19 (lineage B.1.13), Beta (lineage B.1.351) and Delta (lineage B.1.617.2). A qRT-PCR assay used to measure viral replication in the tissue explants over a 15-day period, demonstrated no replication for any viral strains tested. Based on this, the ex vivo challenge protocol was modified by reducing the viral infection time and duration of sampling. Despite these changes, viral infectivity of the nasal and oral mucosa was not improved. Since 67% of the enrolled participants were already vaccinated against SARS-CoV-2, it is possible that neutralizing antibodies in explant tissue may have prevented the establishment of infection. However, we were unable to optimize plaque assays aimed at titrating the virus in supernatants from both infected and uninfected tissue, due to limited volume of culture supernatant available at the various collection time points. Currently, the reasons for the inability of these mucosal tissue samples to support replication of SARS-CoV-2 ex vivo remains unclear and requires further investigation.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes/farmacologia , MucosaRESUMO
IgnatiusPatJac is a Siphoviridae mycobacteriophage capable of lytic infection in Mycobacterium smegmatis and Mycobacterium tuberculosis. It was isolated from damp soil in Johannesburg, South Africa. The 51,164-bp double-stranded DNA genome has a GC content of 63.6%, predicted to encode 93 genes. IgnatiusPatJac is classified as an A1 subcluster mycobacteriophage.
RESUMO
COVID-19 has resulted in nearly 598 million infections and over 6.46 million deaths since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019. The rapid onset of the pandemic, combined with the emergence of viral variants, crippled many health systems particularly from the perspective of coping with massive diagnostic loads. Shortages of diagnostic kits and capacity forced laboratories to store clinical samples resulting in huge backlogs, the effects of this on diagnostic pickup have not been fully understood. Herein, we investigated the impact of storing SARS-CoV-2 inoculated dry swabs on the detection and viability of four viral strains over a period of 7 days. Viral load, as detected by qRT-PCR, displayed no significant degradation during this time for all viral loads tested. In contrast, there was a ca. 2 log reduction in viral viability as measured by the tissue culture infectious dose (TCID) assay, with 1-3 log viable virus detected on dry swabs after 7 days. When swabs were coated with 102 viral copies of the Omicron variant, no viable virus was detected after 24 hours following storage at 4°C or room temperature. However there was no loss of PCR signal over 7 days. All four strains showed comparable growth kinetics and survival when cultured in Vero E6 cells. Our data provide information on the viability of SARS-CoV-2 on stored swabs in a clinical setting with important implications for diagnostic pickup and laboratory processing protocols. Survival after 7 days of SARS-CoV-2 strains on swabs with high viral loads may impact public health and biosafety practices in diagnostic laboratories.
Assuntos
Teste para COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , SARS-CoV-2/genética , Carga Viral/métodos , Teste para COVID-19/métodosRESUMO
Peptidoglycan (PG) is the exoskeleton of bacterial cells and is required for their viability, growth, and cell division. Unlike most bacteria, mycobacteria possess an atypical PG characterized by a high degree of unique linkages and chemical modifications which most likely serve as important determinants of virulence and pathogenesis in mycobacterial diseases. Despite this important role, the chemical composition and molecular architecture of mycobacterial PG have yet to be fully determined. Here we determined the chemical composition of PG from Mycobacterium smegmatis using high-resolution liquid chromatography-mass spectrometry. Purified cell walls from the stationary phase were digested with mutanolysin and compositional analysis was performed on 130 muropeptide ions that were identified using an in silico PG library. The relative abundance for each muropeptide ion was measured by integrating the extracted-ion chromatogram. The percentage of crosslink per PG subunit was measured at 45%. While both 3â3 and 4â3 transpeptide cross-linkages were found in PG dimers, a high abundance of 3â3 linkages was found associated with the trimers. Approximately 43% of disaccharides in the PG of M. smegmatis showed modifications by acetylation or deacetylation. A significant number of PG trimers are found with a loss of 41.00 amu that is consistent with N-deacetylation, whereas the dimers show a gain of 42.01 amu corresponding to O-acetylation of the PG disaccharides. This suggests a possible role of PG acetylation in the regulation of cell wall homeostasis in M. smegmatis. Collectively, these data report important novel insights into the ultrastructure of mycobacterial PG.
Assuntos
Mycobacterium smegmatis , Peptidoglicano , Proteínas de Bactérias/análise , Parede Celular/química , Cromatografia Líquida , Dissacarídeos/análise , Peptidoglicano/química , Espectrometria de Massas em TandemRESUMO
Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.
Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Mycobacterium tuberculosis/metabolismo , Motivos de Aminoácidos , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Endopeptidases/química , Endopeptidases/classificação , Endopeptidases/genética , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Filogenia , Estrutura Secundária de ProteínaRESUMO
Rapid detection of tuberculosis (TB) infection is paramount to curb further transmission. The gold standard for this remains mycobacterial culture, however emerging evidence confirms the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens. These bacteria do not grow under standard culture conditions and require the presence of culture filtrate (CF), from axenic cultures of Mycobacterium tuberculosis (Mtb), to emerge. It has been hypothesized that molecules such as resuscitation promoting factors (Rpfs), fatty acids and cyclic-AMP (cAMP) present in CF are responsible for the growth stimulatory activity. Herein, we tested the ability of CF from the non-pathogenic bacterium Mycobacterium smegmatis (Msm) to stimulate the growth of DCTB, as this organism provides a more tractable source of CF. We also interrogated the role of Mtb Rpfs in stimulation of DCTB by creating recombinant strains of Msm that express Mtb rpf genes in various combinations. CF derived from this panel of strains was tested on sputum from individuals with drug susceptible TB prior to treatment. CF from wild type Msm did not enable detection of DCTB in a manner akin to Mtb CF preparations and whilst the addition of RpfABMtb and RpfABCDEMtb to an Msm mutant devoid of its native rpfs did improve detection of DCTB compared to the no CF control, it was not statistically different to the empty vector control. To further investigate the role of Rpfs, we compared the growth stimulatory activity of CF from Mtb, with and without Rpfs and found these to be equivalent. Next, we tested chemically diverse fatty acids and cAMP for growth stimulation and whilst some selective stimulatory effect was observed, this was not significantly higher than the media control and not comparable to CF. Together, these data indicate that the growth stimulatory effect observed with Mtb CF is most likely the result of a combination of factors. Future work aimed at identifying the nature of these growth stimulatory molecules may facilitate improvement of culture-based diagnostics for TB.
Assuntos
Técnicas Bacteriológicas/métodos , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinas/genética , Citocinas/metabolismo , Humanos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/diagnósticoRESUMO
Diagnosis of tuberculosis in pediatric patients remains challenging due to inherent difficulties associated with obtaining respiratory samples for molecular and culture-based testing. To address this, recent studies have highlighted the utility of tongue swabs to detect Mycobacterium tuberculosis genomic DNA in the oral epithelia of tuberculosis infected adults. It is unknown whether tongue swabs have similar utility for diagnosis of childhood tuberculosis and if the presence of DNA in these swabs was associated with whole bacilli. We therefore sought to conduct a preliminary assessment of the utility of tongue swabs to detect tubercle bacilli and their associated genetic material in young children. For this, we recruited hospitalized children with clinically diagnosed tuberculosis (n = 26) or lower respiratory tract infection (LRTI, n = 9). These categories were blinded for downstream laboratory tests, which included PCR, spoligotyping, smear microscopy, and culture. Mtb genomic DNA was detected by PCR only in clinically diagnosed TB cases [11/26 (31.4%)] and not in cases with LRTI. Of these, 5/11 [45.5%] were associated with a spoligotype. Spoligotyping also detected an additional six specimens that were negative by PCR. Using smear microscopy, 19/26 [73.1%] and 4/9 [44.4] were Mtb positive in the tuberculosis or LRTI categories respectively. We noted positive results on all three tests in 5/26 [19.2%] in the tuberculosis category and 0/9 in the LRTI category. All specimens were culture negative. Collectively, these preliminary data present a compelling case for broader testing of tongue swabs to diagnose tuberculosis in children where obtaining standard sputum specimens is not easy.
Assuntos
Mycobacterium tuberculosis , Ácidos Nucleicos , Tuberculose Pulmonar , Adulto , Criança , Criança Hospitalizada , Pré-Escolar , Humanos , Sensibilidade e Especificidade , Escarro , LínguaRESUMO
There is an urgent need for point-of-care tuberculosis (TB) diagnostic methods that are fast, inexpensive, and operationally simple. Here, we report on a bright solvatochromic dye trehalose conjugate that specifically detects Mycobacterium tuberculosis (Mtb) in minutes. 3-Hydroxychromone (3HC) dyes, known for having high fluorescence quantum yields, exhibit shifts in fluorescence intensity in response to changes in environmental polarity. We synthesized two analogs of 3HC-trehalose conjugates (3HC-2-Tre and 3HC-3-Tre) and determined that 3HC-3-Tre has exceptionally favorable properties for Mtb detection. 3HC-3-Tre-labeled mycobacterial cells displayed a 10-fold increase in fluorescence intensity compared to our previous reports on the dye 4,4-N,N-dimethylaminonapthalimide (DMN-Tre). Excitingly, we detected fluorescent Mtb cells within 10 min of probe treatment. Thus, 3HC-3-Tre permits rapid visualization of mycobacteria that ultimately could empower improved Mtb detection at the point-of-care in low-resource settings.
RESUMO
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the leading cause of death from an infectious bacterium and is responsible for 1.8 million deaths annually. The emergence of drug resistance, together with the need for a shorter more effective regimen, has prompted the drive to identify novel therapeutics with the bacterial cell surface emerging as a tractable area for drug development. Mtb assembles a unique, waxy, and complex cell envelope comprised of the mycolyl-arabinogalactan-peptidoglycan complex and an outer capsule like layer, which are collectively essential for growth and pathogenicity while serving as an inherent barrier against antibiotics. A detailed understanding of the biosynthetic pathways required to assemble the polymers that comprise the cell surface will enable the identification of novel drug targets as these structures provide a diversity of biochemical reactions that can be targeted. Herein, we provide an overview of recently described mycobacterial cell wall targeting compounds, novel drug combinations and their modes of action. We anticipate that this summary will enable prioritization of the best pathways to target and triage of the most promising molecules to progress for clinical assessment.