Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 531(7594): 381-5, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26934220

RESUMO

The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.


Assuntos
Alanina/análogos & derivados , Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Macaca mulatta/virologia , Ribonucleotídeos/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Sequência de Aminoácidos , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Linhagem Celular Tumoral , Ebolavirus/efeitos dos fármacos , Feminino , Células HeLa , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ribonucleotídeos/farmacocinética , Ribonucleotídeos/farmacologia
2.
Nature ; 508(7496): 402-5, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24590073

RESUMO

Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Infecções por Filoviridae/prevenção & controle , Infecções por Filoviridae/virologia , Filoviridae/efeitos dos fármacos , Nucleosídeos de Purina/farmacologia , Adenina/análogos & derivados , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacocinética , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Animais de Doenças , Ebolavirus/efeitos dos fármacos , Filoviridae/enzimologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Injeções Intramusculares , Macaca fascicularis/virologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/virologia , Marburgvirus/efeitos dos fármacos , Nucleosídeos de Purina/administração & dosagem , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacocinética , Pirrolidinas , RNA/biossíntese , Fatores de Tempo
3.
BMC Microbiol ; 14: 98, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24750902

RESUMO

BACKGROUND: Burkholderia pseudomallei (Bp), a Gram-negative, motile, facultative intracellular bacterium is the causative agent of melioidosis in humans and animals. The Bp genome encodes a repertoire of virulence factors, including the cluster 3 type III secretion system (T3SS-3), the cluster 1 type VI secretion system (T6SS-1), and the intracellular motility protein BimA, that enable the pathogen to invade both phagocytic and non-phagocytic cells. A unique hallmark of Bp infection both in vitro and in vivo is its ability to induce cell-to-cell fusion of macrophages to form multinucleated giant cells (MNGCs), which to date are semi-quantitatively reported following visual inspection. RESULTS: In this study we report the development of an automated high-content image acquisition and analysis assay to quantitate the Bp induced MNGC phenotype. Validation of the assay was performed using T6SS-1 (∆hcp1) and T3SS-3 (∆bsaZ) mutants of Bp that have been previously reported to exhibit defects in their ability to induce MNGCs. Finally, screening of a focused small molecule library identified several Histone Deacetylase (HDAC) inhibitors that inhibited Bp-induced MNGC formation of macrophages. CONCLUSIONS: We have successfully developed an automated HCI assay to quantitate MNGCs induced by Bp in macrophages. This assay was then used to characterize the phenotype of the Bp mutants for their ability to induce MNGC formation and identify small molecules that interfere with this process. Successful application of chemical genetics and functional reverse genetics siRNA approaches in the MNGC assay will help gain a better understanding of the molecular targets and cellular mechanisms responsible for the MNGC phenotype induced by Bp, by other bacteria such as Mycobacterium tuberculosis, or by exogenously added cytokines.


Assuntos
Burkholderia pseudomallei/fisiologia , Células Gigantes/citologia , Células Gigantes/microbiologia , Processamento de Imagem Assistida por Computador , Macrófagos/citologia , Macrófagos/microbiologia , Imagem Óptica , Animais , Automação Laboratorial , Linhagem Celular , Técnicas Citológicas , Camundongos , Fenótipo
4.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807849

RESUMO

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin's potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.


Assuntos
Antivirais , Nucleosídeos de Pirimidina , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/toxicidade , COVID-19/virologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Feminino , Humanos , Masculino , Camundongos , Nucleosídeos de Pirimidina/farmacocinética , Nucleosídeos de Pirimidina/farmacologia , Nucleosídeos de Pirimidina/toxicidade , Células Vero
5.
Circ Res ; 104(3): 355-64, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19122180

RESUMO

Previous studies have postulated an important role for the inwardly rectifying potassium current (I(K1)) in controlling the dynamics of electrophysiological spiral waves responsible for ventricular tachycardia and fibrillation. In this study, we developed a novel tissue model of cultured neonatal rat ventricular myocytes (NRVMs) with uniform or heterogeneous Kir2.1expression achieved by lentiviral transfer to elucidate the role of I(K1) in cardiac arrhythmogenesis. Kir2.1-overexpressed NRVMs showed increased I(K1) density, hyperpolarized resting membrane potential, and increased action potential upstroke velocity compared with green fluorescent protein-transduced NRVMs. Opposite results were observed in Kir2.1-suppressed NRVMs. Optical mapping of uniformly Kir2.1 gene-modified monolayers showed altered conduction velocity and action potential duration compared with nontransduced and empty vector-transduced monolayers, but functional reentrant waves could not be induced. In monolayers with an island of altered Kir2.1 expression, conduction velocity and action potential duration of the locally transduced and nontransduced regions were similar to those of the uniformly transduced and nontransduced monolayers, respectively, and functional reentrant waves could be induced. The waves were anchored to islands of Kir2.1 overexpression and remained stable but dropped in frequency and meandered away from islands of Kir2.1 suppression. In monolayers with an inverse pattern of I(K1) heterogeneity, stable high frequency spiral waves were present with I(K1) overexpression, whereas lower frequency, meandering spiral waves were observed with I(K1) suppression. Our study provides direct evidence for the contribution of I(K1) heterogeneity and level to the genesis and stability of spiral waves and highlights the potential importance of I(K1) as an antiarrhythmia target.


Assuntos
Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/fisiopatologia , Animais , Células Cultivadas , Heterogeneidade Genética , Proteínas de Fluorescência Verde/genética , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos
6.
Front Microbiol ; 12: 625211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967974

RESUMO

Burkholderia mallei, the causative agent of glanders, is a gram-negative intracellular bacterium. Depending on different routes of infection, the disease is manifested by pneumonia, septicemia, and chronic infections of the skin. B. mallei poses a serious biological threat due to its ability to infect via aerosol route, resistance to multiple antibiotics and to date there are no US Food and Drug Administration (FDA) approved vaccines available. Induction of innate immunity, inflammatory cytokines and chemokines following B. mallei infection, have been observed in in vitro and small rodent models; however, a global characterization of host responses has never been systematically investigated using a non-human primate (NHP) model. Here, using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we identified alterations in expression levels of host proteins in peripheral blood mononuclear cells (PBMCs) originating from naïve rhesus macaques (Macaca mulatta), African green monkeys (Chlorocebus sabaeus), and cynomolgus macaques (Macaca fascicularis) exposed to aerosolized B. mallei. Gene ontology (GO) analysis identified several statistically significant overrepresented biological annotations including complement and coagulation cascade, nucleoside metabolic process, vesicle-mediated transport, intracellular signal transduction and cytoskeletal protein binding. By integrating an LC-MS/MS derived proteomics dataset with a previously published B. mallei host-pathogen interaction dataset, a statistically significant predictive protein-protein interaction (PPI) network was constructed. Pharmacological perturbation of one component of the PPI network, specifically ezrin, reduced B. mallei mediated interleukin-1ß (IL-1ß). On the contrary, the expression of IL-1ß receptor antagonist (IL-1Ra) was upregulated upon pretreatment with the ezrin inhibitor. Taken together, inflammasome activation as demonstrated by IL-1ß production and the homeostasis of inflammatory response is critical during the pathogenesis of glanders. Furthermore, the topology of the network reflects the underlying molecular mechanism of B. mallei infections in the NHP model.

7.
Lancet Infect Dis ; 20(9): e231-e237, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32563280

RESUMO

The PALM trial in the Democratic Republic of the Congo identified a statistically significant survival benefit for two monoclonal antibody-based therapeutics in the treatment of acute Ebola virus disease; however, substantial gaps remain in improving the outcomes of acute Ebola virus disease and for the survivors. Ongoing efforts are needed to develop more effective strategies, particularly for individuals with severe disease, for prevention and treatment of viral persistence in immune-privileged sites, for optimisation of post-exposure prophylaxis, and to increase therapeutic breadth. As antibody-based approaches are identified and advanced, promising small-molecule antivirals currently in clinical stage development should continue to be evaluated for filovirus diseases, with consideration of their added value in combination approaches with bundled supportive care, their penetration in tissues of interest, the absence of interaction with glycoprotein-based vaccines, and filoviral breadth.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/terapia , Humanos , Profilaxia Pós-Exposição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA