Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(28): 7216-7221, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652367

RESUMO

Halide perovskites are promising semiconductor materials for solution-processed optoelectronic devices. Their strong ionic bonding nature results in highly dynamic crystal lattices, inherently allowing rapid ion exchange at the solid-vapor and solid-liquid interface. Here, we show that the anion-exchange chemistry can be precisely controlled in single-crystalline halide perovskite nanomaterials when combined with nanofabrication techniques. We demonstrate spatially resolved multicolor CsPbX3 (X = Cl, Br, I, or alloy of two halides) nanowire heterojunctions with a pixel size down to 500 nm with the photoluminescence tunable over the entire visible spectrum. In addition, the heterojunctions show distinct electronic states across the interface, as revealed by Kelvin probe force microscopy. These perovskite heterojunctions represent key building blocks for high-resolution multicolor displays beyond current state-of-the-art technology as well as high-density diode/transistor arrays.

2.
Proc Natl Acad Sci U S A ; 113(8): 1993-8, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26862172

RESUMO

The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 µJ cm(-2) with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10(9) excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.

3.
J Am Chem Soc ; 138(23): 7236-9, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27213511

RESUMO

Here, we demonstrate the successful synthesis of brightly emitting colloidal cesium lead halide (CsPbX3, X = Cl, Br, I) nanowires (NWs) with uniform diameters and tunable compositions. By using highly monodisperse CsPbBr3 NWs as templates, the NW composition can be independently controlled through anion-exchange reactions. CsPbX3 alloy NWs with a wide range of alloy compositions can be achieved with well-preserved morphology and crystal structure. The NWs are highly luminescent with photoluminescence quantum yields (PLQY) ranging from 20% to 80%. The bright photoluminescence can be tuned over nearly the entire visible spectrum. The high PLQYs together with charge transport measurements exemplify the efficient alloying of the anionic sublattice in a one-dimensional CsPbX3 system. The wires increased functionality in the form of fast photoresponse rates and the low defect density suggest CsPbX3 NWs as prospective materials for optoelectronic applications.

4.
J Am Chem Soc ; 137(51): 16008-11, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26669631

RESUMO

Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. The broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskite NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices.

5.
J Am Chem Soc ; 137(29): 9230-3, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26181343

RESUMO

Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

6.
J Phys Chem A ; 119(18): 4151-61, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25856414

RESUMO

Two terrylene chromophores, 2,5,10,13-tetra(tert-butyl)terrylene (1) and 2,5-di(tert-butyl)terrylene (2), were synthesized and studied to determine their singlet exciton fission (SF) efficiencies. Compound 1 crystallizes in one-dimensional stacks, whereas 2 packs in a slip-stacked, herringbone pattern of dimers motif. Strongly quenched fluorescence and rapid singlet exciton decay dynamics are observed in vapor-deposited thin films of 1 and 2. Phosphorescence measurements on thin films of 1 and 2 show that SF is only 70 meV endoergic for these chromophores. Femtosecond transient absorption experiments using low laser fluences on these films reveal rapid triplet exciton formation for both 1 (τ = 120 ± 10 ps) and 2 (τ = 320 ± 20 ps) that depends strongly on film crystallinity. The transient absorption data are consistent with formation of an excimer state prior to SF. Triplet exciton yield measurements indicate nearly quantitative SF in thin films of both chromophores in highly crystalline solvent-vapor-annealed films: 170 ± 20% for 1 and 200 ± 30% for 2. These results show that significantly different crystal morphologies of the same chromophore can both result in high-efficiency SF provided that the energetics are favorable.

7.
Proc Natl Acad Sci U S A ; 109(39): 15651-6, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22586073

RESUMO

Photodriving the activity of water-oxidation catalysts is a critical step toward generating fuel from sunlight. The design of a system with optimal energetics and kinetics requires a mechanistic understanding of the single-electron transfer events in catalyst activation. To this end, we report here the synthesis and photophysical characterization of two covalently bound chromophore-catalyst electron transfer dyads, in which the dyes are derivatives of the strong photooxidant perylene-3,4:9,10-bis(dicarboximide) (PDI) and the molecular catalyst is the Cp*Ir(ppy)Cl metal complex, where ppy = 2-phenylpyridine. Photoexcitation of the PDI in each dyad results in reduction of the chromophore to PDI(•-) in less than 10 ps, a process that outcompetes any generation of (3*)PDI by spin-orbit-induced intersystem crossing. Biexponential charge recombination largely to the PDI-Ir(III) ground state is suggestive of multiple populations of the PDI(•-)-Ir(IV) ion-pair, whose relative abundance varies with solvent polarity. Electrochemical studies of the dyads show strong irreversible oxidation current similar to that seen for model catalysts, indicating that the catalytic integrity of the metal complex is maintained upon attachment to the high molecular weight photosensitizer.


Assuntos
Irídio/química , Oxidantes Fotoquímicos/química , Perileno , Processos Fotoquímicos , Água/química , Catálise , Transporte de Elétrons , Cinética , Oxirredução , Perileno/análogos & derivados , Perileno/química , Piridinas/química
8.
Chemistry ; 20(45): 14690-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25258209

RESUMO

Understanding the mechanism of efficient photoinduced electron-transfer processes is essential for developing molecular systems for artificial photosynthesis. Towards this goal, we describe the synthesis of a donor-acceptor dyad comprising a zinc porphyrin donor and a tetracationic cyclobis(paraquat-p-phenylene) (CBPQT(4+) ) acceptor. The X-ray crystal structure of the dyad reveals the formation of a dimeric motif through the intermolecular coordination between the triazole nitrogen and the central Zn metal of two adjacent units of the dyad. Photoinduced electron transfer within the dyad in MeCN was investigated by femtosecond and nanosecond transient absorption spectroscopy, as well as by transient EPR spectroscopy. Photoexcitation of the dyad produced a weakly coupled ZnP(+.) -CBPQT(3+.) spin-correlated radical-ion pair having a τ=146 ns lifetime and a spin-spin exchange interaction of only 0.23 mT. The long radical-ion-pair lifetime results from weak donor-acceptor electronic coupling as a consequence of having nine bonds between the donor and the acceptor, and the reduction in reorganization energy for electron transfer caused by charge dispersal over both paraquat units within CBPQT(3+.) .


Assuntos
Metaloporfirinas/química , Paraquat/análogos & derivados , Zinco/química , Materiais Biomiméticos/química , Transporte de Elétrons , Modelos Moleculares , Paraquat/química , Processos Fotoquímicos
9.
Phys Chem Chem Phys ; 16(43): 23735-42, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25272158

RESUMO

Excitation energy transfer in perylene-3,4:9,10-bis(dicarboximide) (PDI) aggregates is of interest for light-harvesting applications of this strongly absorbing and π-π stacking chromophore. Here we report the synthesis and characterization of two PDI dimers in which the chromophores are covalently linked by a redox-inactive triptycene bridge in orientations that are cofacial (1) and slip-stacked along their N-N axes (2). Femtosecond transient absorption experiments on 1 and 2 reveal rapid exciton delocalization resulting excimer formation. Cofacial π-π stacked dimer 1 forms a low-energy excimer state absorption (λmax = 1666 nm) in τ = ∼2 ps after photoexcitation. Inserting a phenyl spacer on the bridge to generate a slip-stacked PDI-PDI geometry in 2 results in a less stable excimer state (λmax = 1430 nm), which forms in τ = ∼12 ps due to decreased electronic coupling. The near-infrared (NIR) excimer absorption of cofacial dimer 1 is ∼120 meV lower in energy than that of slip-stacked dimer 2, further highlighting electronic differences between these states.

10.
J Am Chem Soc ; 135(39): 14701-12, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24011336

RESUMO

The crystal structure of N,N-bis(n-octyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide), 1, obtained by X-ray diffraction reveals that 1 has a nearly planar perylene core and π-π stacks at a 3.5 Å interplanar distance in well-separated slip-stacked columns. Theory predicts that slip-stacked, π-π-stacked structures should enhance interchromophore electronic coupling and thus favor singlet exciton fission. Photoexcitation of vapor-deposited polycrystalline 188 nm thick films of 1 results in a 140 ± 20% yield of triplet excitons ((3*)1) in τ(SF) = 180 ± 10 ps. These results illustrate a design strategy for producing perylenediimide and related rylene derivatives that have the optimized interchromophore electronic interactions which promote high-yield singlet exciton fission for potentially enhancing organic solar cell performance and charge separation in systems for artificial photosynthesis.

11.
ACS Nano ; 10(2): 2600-6, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26820809

RESUMO

Copper nanowire (Cu NW) based transparent conductors are promising candidates to replace ITO (indium-tin-oxide) owing to the high electrical conductivity and low-cost of copper. However, the relatively low performance and poor stability of Cu NWs under ambient conditions limit the practical application of these devices. Here, we report a solution-based approach to wrap graphene oxide (GO) nanosheets on the surface of ultrathin copper nanowires. By mild thermal annealing, GO can be reduced and high quality Cu r-GO core-shell NWs can be obtained. High performance transparent conducting films were fabricated with these ultrathin core-shell nanowires and excellent optical and electric performance was achieved. The core-shell NW structure enables the production of highly stable conducting films (over 200 days stored in air), which have comparable performance to ITO and silver NW thin films (sheet resistance ∼28 Ω/sq, haze ∼2% at transmittance of ∼90%).

12.
ACS Nano ; 10(5): 5525-35, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27124203

RESUMO

Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%.

13.
J Phys Chem B ; 119(24): 7635-43, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25459236

RESUMO

A series of electron donor-acceptor compounds based on substitution of perylene-3,4:9,10-bis(dicarboximide) (PDI) with four electron donors at the 2,5,8,11-positions were synthesized and characterized using femtosecond transient absorption spectroscopy. The distance between the PDI and the N,N-dimethylaniline or phenothiazine donors was varied using one or two phenyl groups. Photoexcitation of PDI results in rapid charge separation followed by charge recombination with time constants ranging from tens of picoseconds to nanoseconds. The electron transfer time constants are compared with those of the corresponding molecules in which the donor is attached to the PDI through its imide nitrogen atom. The electron transfer reactions through the 2,5,8,11-positions of PDI are generally much faster than those through the imide nitrogen positions, in concert with stronger donor electronic coupling to the PDI acceptor core and in contrast to substituents at the imide positions through which the HOMO and LUMO nodal planes pass.

14.
Photochem Photobiol ; 91(3): 739-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25296568

RESUMO

The mechanism and dynamics of photoinduced electron transfer in two families of DNA hairpins possessing Michler's ketone linkers have been investigated by means of steady state and time-resolved transient absorption and emission spectroscopies. The excited state behavior of the diol linker employed in hairpin synthesis is similar to that of Michler's ketone in methanol solution. Hairpins possessing only a Michler's ketone linker undergo fast singlet state charge separation and charge recombination with an adjacent purine base, attributed to well-stacked ground state conformations, and intersystem crossing to the triplet state, attributed to poorly stacked ground state conformations. The failure of the triplet to undergo electron transfer reactions on the 7 ns time scale of our measurements is attributed to the low triplet energy and reduction potential of the twisted triplet state. Hairpins possessing both a Michler's ketone linker and a perylenediimide base surrogate separated by four base pairs undergo photoinduced hole transport from the diimide to Michler's ketone upon excitation of the diimide. The efficiency of hole transport is dependent upon the sequence of the intervening purine bases.


Assuntos
Benzofenonas/química , DNA/química , Elétrons , Sequências Repetidas Invertidas , Estrutura Molecular , Conformação de Ácido Nucleico
15.
Chem Sci ; 6(1): 402-411, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936299

RESUMO

The photophysics of a covalently linked perylenediimide-diketopyrrolopyrrole-perylenediimide acceptor-donor-acceptor molecule (PDI-DPP-PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ∼6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, upon CH2Cl2 vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron-hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ∼4 µs. This result has significant implications for the design of organic solar cells based on covalent donor-acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.

16.
Science ; 349(6255): 1518-21, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404831

RESUMO

Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

17.
Org Lett ; 16(3): 696-9, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24417249

RESUMO

A series of electron-deficient perylene and naphthalene imides and diimides (1-4) with varying degrees of trifluoromethylation were synthesized. Single crystal X-ray analysis afforded detailed structural information, while spectroelectrochemical and EPR spectroscopy provided characterization of the radical anions of 1-4. This study reveals that trifluoromethylation of the imides and diimides makes their one-electron reduction potentials substantially more positive relative to the unsubstituted counterparts, while their other properties remain largely unchanged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA