RESUMO
Paenilamicins are a group of complex polycationic peptide secondary metabolites with antibacterial and antifungal activities produced by the devastating honey bee brood pathogen Paenibacillus larvae causing the lethal brood disease American Foulbrood (AFB). Here, we report the convergent total synthesis and structural revision of paenilamicin B2. Specific stereoisomers of paenilamicin B2 were synthesized for unambiguous confirmation of the natural product structure and for evaluation of biological activities. These studies revealed the N-terminal fragment of paenilamicin as an important pharmacophore. Infection assays using bee larvae and the insect pathogen Bacillus thuringiensis demonstrated that paenilamicins outcompete bacterial competitors in the ecological niche of P. larvae. Finally, we show first data that classifies paenilamicins as potential ribosome inhibitors. Hence, our synthesis route is a further step for understanding the pathogenicity of P. larvae and for thorough structure-activity-relationship as well as mode-of-action studies in the near future.
Assuntos
Paenibacillus larvaeRESUMO
Paenibacillus larvae is the causative agent of the notifiable epizootic American foulbrood, a fatal bacterial disease of honey bee larvae. The species P. larvae has been classified into four differentially virulent and prevalent genotypes (ERIC I-IV), which also differ in their virulence factor equipment. Recently, a novel P. larvae toxin, the C3-like C3larvin, has been described. Genome analysis now revealed that the C3larvin gene is actually a part of a toxin locus encompassing two genes encoding a binary AB toxin with the A subunit being C3larvin (C3larvinA) and a putative B subunit (C3larvinB) encoded by the second gene. Sequence and structural analyses demonstrated that C3larvinB is a homologue of the Bacillus anthracis protective antigen (PA), the B subunit of anthrax toxin. The C3larvinAB toxin locus was interrupted by point mutations in all analysed P. larvae ERIC I and ERIC II strains. Only one P. larvae ERIC III/IV strain harboured an uninterrupted toxin locus comprising full-length genes for C3larvinA and B. Exposure bioassays did not substantiate a role as virulence factor for C3larvinAB in P. larvae ERIC I/II. However, the PA homologue C3larvinB had an influence on the virulence of the unique P. larvae strain expressing the functional C3larvinAB locus.
Assuntos
Toxinas Bacterianas/metabolismo , Abelhas/microbiologia , Paenibacillus larvae/metabolismo , Animais , Toxinas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genótipo , Larva/microbiologia , Estados Unidos , Virulência/genética , Fatores de Virulência/genéticaRESUMO
The toxin Plx2A is an important virulence factor of Paenibacillus larvae, the etiological agent of American Foulbrood, the most destructive bacterial disease of honey bees. Biochemical and functional analyses as well as the crystal structure of Plx2A revealed that it belongs to the C3 mono-ADP-ribosylating toxin subgroup. RhoA was identified as the cellular target of Plx2A activity. The kinetic parameters (KM , kcat ) were established for both the transferase and glycohydrolase reactions. When expressed in yeast, Plx2A was cytotoxic for eukaryotic cells and catalytic variants confirmed that the cytotoxicity of Plx2A depends on its enzymatic activity. The crystal structure of Plx2A was solved to 1.65 Å and confirmed that it is a C3-like toxin, although with a new molecular twist, it has a B-domain. A molecular model of the 'active' enzyme conformation in complex with NAD+ was produced by computational methods based on the recent structure of C3bot1 with RhoA. In murine macrophages, Plx2A induced actin cytoskeleton reorganization while in insect cells, vacuolization and the occurrence of bi-nucleated cells was observed. The latter is indicative of an inhibition of cytokinesis. All these cellular effects are consistent with Plx2A inhibiting the activity of RhoA by covalent modification.
Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Abelhas/microbiologia , Macrófagos/patologia , Paenibacillus larvae/patogenicidade , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Catálise , Linhagem Celular , Camundongos , Modelos Moleculares , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Virulência/metabolismoRESUMO
The gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood of honey bees, a notifiable disease in many countries. Hence, P. larvae can be considered as an entomopathogen of considerable relevance in veterinary medicine. P. larvae is a highly specialized pathogen with only one established host, the honey bee larva. No other natural environment supporting germination and proliferation of P. larvae is known. Over the last decade, tremendous progress in the understanding of P. larvae and its interactions with honey bee larvae at a molecular level has been made. In this review, we will present the recent highlights and developments in P. larvae research and discuss the impact of some of the findings in a broader context to demonstrate what we can learn from studying "exotic" pathogens.
Assuntos
Abelhas/microbiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno/fisiologia , Larva/microbiologia , Paenibacillus larvae/patogenicidade , Animais , Toxinas Bacterianas/metabolismo , Paenibacillus larvae/genética , Paenibacillus larvae/metabolismoRESUMO
American Foulbrood (AFB) of honey bees caused by the spore-forming bacterium Paenibacillus larvae is a notifiable epizootic in most countries. Authorities often consider a rigorous eradication policy the only sustainable control measure. However, early diagnosis of infected but not yet diseased colonies opens up the possibility of ridding these colonies of P. larvae spores by the shook swarm method, thus preventing colony destruction by AFB or official control orders. Therefore, surveillance of bee colonies for P. larvae infection followed by appropriate sanitary measures is a very important intervention to control AFB. For the detection of P. larvae spores in infected colonies, samples of brood comb honey, adult bees, or hive debris are commonly used. We here present our results from a comparative study on the suitability of these matrices in reliably and correctly detecting P. larvae spores contained in these matrices. Based on the sensitivity and limit of detection of P. larvae spores in samples from hive debris, adult bees, and brood comb honey, we conclude that the latter two are equally well-suited for AFB surveillance programs. Hive debris samples should only be used when it is not possible to collect honey or adult bee samples from brood combs.
RESUMO
Honey bees are important pollinators of agricultural crops and despite the reports about elevated local colony losses over the last few decades [...].
RESUMO
Paenibacillus larvae, the causative agent of the devastating honey-bee disease American Foulbrood, produces the cationic polyketide-peptide hybrid paenilamicin that displays antibacterial and antifungal activity. Its biosynthetic gene cluster contains a gene coding for the N-acetyltransferase PamZ. We show that PamZ acts as self-resistance factor in Paenibacillus larvae by deactivation of paenilamicin. Using tandem mass spectrometry, nuclear magnetic resonance spectroscopy and synthetic diastereomers, we identified the N-terminal amino group of the agmatinamic acid as the N-acetylation site. These findings highlight the pharmacophore region of paenilamicin, which we very recently identified as a ribosome inhibitor. Here, we further determined the crystal structure of PamZ:acetyl-CoA complex at 1.34 Å resolution. An unusual tandem-domain architecture provides a well-defined substrate-binding groove decorated with negatively-charged residues to specifically attract the cationic paenilamicin. Our results will help to understand the mode of action of paenilamicin and its role in pathogenicity of Paenibacillus larvae to fight American Foulbrood.
Assuntos
Paenibacillus , Policetídeos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Abelhas , Resistência Microbiana a Medicamentos , Larva , Paenibacillus/genética , Policetídeos/farmacologia , Estados UnidosRESUMO
The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. Normally, C3-exoenzymes do not occur together with a B subunit partner, but as single domain toxins. Interestingly, the B subunits of the two P. larvae C3-like toxins are homologous to the B-subunits of C2-like toxins with striking structural similarity to the PA-63 protomer of Bacillus anthracis.
Assuntos
ADP Ribose Transferases/metabolismo , ADP-Ribosilação , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Abelhas/microbiologia , Infecções por Bactérias Gram-Positivas/enzimologia , Paenibacillus/enzimologia , ADP Ribose Transferases/química , Animais , Apoptose , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Criação de Abelhas , Abelhas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Interações Hospedeiro-Patógeno , Paenibacillus/patogenicidade , Conformação Proteica , Relação Estrutura-Atividade , Virulência , Fatores de Virulência/metabolismoRESUMO
American Foulbrood, caused by Paenibacillus larvae, is the most devastating bacterial honey bee brood disease. Finding a treatment against American Foulbrood would be a huge breakthrough in the battle against the disease. Recently, small molecule inhibitors against virulence factors have been suggested as candidates for the development of anti-virulence strategies against bacterial infections. We therefore screened an in-house library of synthetic small molecules and a library of flavonoid natural products, identifying the synthetic compound M3 and two natural, plant-derived small molecules, Acacetin and Baicalein, as putative inhibitors of the recently identified P. larvae toxin Plx2A. All three inhibitors were potent in in vitro enzyme activity assays and two compounds were shown to protect insect cells against Plx2A intoxication. However, when tested in exposure bioassays with honey bee larvae, no effect on mortality could be observed for the synthetic or the plant-derived inhibitors, thus suggesting that the pathogenesis strategies of P. larvae are likely to be too complex to be disarmed in an anti-virulence strategy aimed at a single virulence factor. Our study also underscores the importance of not only testing substances in in vitro or cell culture assays, but also testing the compounds in P. larvae-infected honey bee larvae.
Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Abelhas/microbiologia , Paenibacillus larvae/patogenicidade , Fatores de Virulência/metabolismo , Virulência/efeitos dos fármacos , Animais , Interações Hospedeiro-Patógeno , Bibliotecas de Moléculas PequenasRESUMO
C3larvinA is a putative virulence factor produced by Paenibacillus larvae enterobacterial-repetitive-intergenic-consensus (ERIC) III/IV (strain 11-8051). Biochemical, functional and structural analyses of C3larvinA revealed that it belongs to the C3-like mono-ADP-ribosylating toxin subgroup. Mammalian RhoA was the target substrate for its transferase activity suggesting that it may be the biological target of C3larvinA. The kinetic parameters of the NAD+ substrate for the transferase (KM = 75 ± 10 µM) and glycohydrolase (GH) (KM = 107 ± 20 µM) reactions were typical for a C3-like bacterial toxin, including the Plx2A virulence factor from Paenibacillus larvae ERIC I. Upon cytoplasmic expression in yeast, C3larvinA caused a growth-defective phenotype indicating that it is an active C3-like toxin and is cytotoxic to eukaryotic cells. The catalytic variant of the Q187-X-E189 motif in C3larvinA showed no cytotoxicity toward yeast confirming that the cytotoxicity of this factor depends on its enzymatic activity. A homology consensus model of C3larvinA with NAD+ substrate was built on the structure of Plx2A, provided additional confirmation that C3larvinA is a member of the C3-like mono-ADP-ribosylating toxin subgroup. A homology model of C3larvinA with NADH and RhoA was built on the structure of the C3cer-NADH-RhoA complex which provided further evidence that C3larvinA is a C3-like toxin that shares an identical catalytic mechanism with C3cer from Bacillus cereus. C3larvinA induced actin cytoskeleton reorganization in murine macrophages, whereas in insect cells, vacuolization and bi-nucleated cells were observed. These cellular effects are consistent with C3larvinA disrupting RhoA function by covalent modification that is shared among C3-like bacterial toxins.
Assuntos
ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/metabolismo , Abelhas/microbiologia , Paenibacillus larvae/enzimologia , Fatores de Virulência/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , Citoesqueleto de Actina/enzimologia , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Interações Hospedeiro-Patógeno , Cinética , Macrófagos/enzimologia , Mutação , Paenibacillus larvae/genética , Paenibacillus larvae/patogenicidade , Conformação Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Células Sf9 , Spodoptera , Relação Estrutura-Atividade , Especificidade por Substrato , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética , Proteína rhoA de Ligação ao GTP/químicaRESUMO
Pollination is an indispensable ecosystem service provided by many insects, especially by wild and managed bee species. Hence, reports on large scale honey bee colony losses and on population declines of many wild bees were alarming and resulted in increased awareness of the importance of bee health and increased interest in bee pathogens. To serve this interest, this review will give a comprehensive overview on bacterial bee pathogens by covering not only the famous pathogens (Paenibacillus larvae, Melissococcus plutonius), but also the orphan pathogens which have largely been neglected by the scientific community so far (spiroplasmas) and the pathogens which were only recently discovered as being pathogenic to bees (Serratia marcescens, Lysinibacillus sphaericus).
Assuntos
Bactérias , Abelhas/microbiologia , Animais , Abelhas/crescimento & desenvolvimento , Larva/microbiologiaRESUMO
American Foulbrood is a worldwide distributed, fatal disease of the brood of the Western honey bee (Apis mellifera). The causative agent of this fatal brood disease is the Gram-positive, spore-forming bacterium Paenibacillus larvae, which can be classified into four different genotypes (ERIC I-IV), with ERIC I and II being the ones isolated from contemporary AFB outbreaks. P. larvae is a peritrichously flagellated bacterium and, hence, we hypothesized that P. larvae is capable of coordinated and cooperative multicellular behaviors like swarming motility and biofilm formation. In order to analyze these behaviors of P. larvae, we firstly established appropriate functional assays. Using these assays we demonstrated that P. larvae ERIC II, but not P. larvae ERIC I, was capable of swarming. Swarming motility was hampered in a P. larvae ERIC II-mutant lacking production of paenilarvin, an iturin-like lipopeptide exclusively expressed by this genotype. Both genotypes were able to form free floating biofilm aggregates loosely attached to the walls of the culture wells. Visualizing the biofilms by Congo red and thioflavin S staining suggested structural differences between the biofilms formed. Biofilm formation was shown to be independent from paenilarvin production because the paenilarvin deficient mutant was comparably able to form a biofilm.
Assuntos
Abelhas/microbiologia , Biofilmes/crescimento & desenvolvimento , Locomoção , Paenibacillus larvae/fisiologia , Animais , Técnicas Bacteriológicas , Genótipo , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Lipopeptídeos/metabolismo , Paenibacillus larvae/classificação , Paenibacillus larvae/genética , Coloração e RotulagemRESUMO
Epigenetic mechanisms, such as CpG DNA methylation enable phenotypic plasticity and rapid adaptation to changing environments. CpG DNA methylation is established by DNA methyltransferases (DNMTs), which are well conserved across vertebrates and invertebrates. There are insects with functional DNA methylation despite lacking a complete set of Dnmts. But at least one of the enzymes, DNMT1, appears to be required to maintain an active DNA methylation system. The red flour beetle, Tribolium castaneum, lacks Dnmt3 but possesses Dnmt1 and it has been controversial whether it has a functional DNA methylation system. Using whole genome bisulfite sequencing, we did not find any defined patterns of CpG DNA methylation in embryos. Nevertheless, we found Dnmt1 expressed throughout the entire life cycle of the beetle, with mRNA transcripts significantly more abundant in eggs and ovaries. A maternal knockdown of Dnmt1 caused a developmental arrest in offspring embryos. We show that Dnmt1 plays an essential role in T. castaneum embryos and that its downregulation leads to an early developmental arrest. This function appears to be unrelated to DNA methylation, since we did not find any evidence for this modification. This strongly suggests an alternative role of this protein.
Assuntos
Besouros/genética , Besouros/metabolismo , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Animais , Epigênese Genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Interferência de RNA , Sequenciamento Completo do GenomaRESUMO
The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the understanding of the (patho)biology of P. larvae. Recently, several non-ribosomally produced peptides (NRP) and peptide/polyketide (NRP/PK) hybrids produced by P. larvae were identified. Among these NRPs were iturin-like lipopeptides, the paenilarvins A-C. Iturins are known to exhibit strong anti-fungal activity; for some iturins, cytotoxic activity towards mammalian erythrocytes and human cancer cell lines are described. We here present our results on the analysis of the natural function of the paenilarvins during pathogenesis of P. larvae infections. We demonstrated production of paenilarvins in infected larvae. However, we could neither demonstrate cytotoxicity of paenilarvins towards cultured insect cells nor towards larvae in feeding assays. Accordingly, exposure bioassays performed with larvae infected by wild-type P. larvae and a knockout mutant of P. larvae lacking production of paenilarvins did not substantiate a role for the paenilarvins as virulence factor. Further experiments are necessary to analyze the relevance of the paenilarvins' anti-fungal activity for P. larvae infections in the presence of fungal competitors in the larval midgut or cadaver.