Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genome Res ; 33(9): 1582-1598, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580131

RESUMO

Telomeres and subtelomeres, the genomic regions located at chromosome extremities, are essential for genome stability in eukaryotes. In the absence of the canonical maintenance mechanism provided by telomerase, telomere shortening induces genome instability. The landscape of the ensuing genome rearrangements is not accessible by short-read sequencing. Here, we leverage Oxford Nanopore Technologies long-read sequencing to survey the extensive repertoire of genome rearrangements in telomerase mutants of the model green microalga Chlamydomonas reinhardtii In telomerase-mutant strains grown for hundreds of generations, most chromosome extremities were capped by short telomere sequences that were either recruited de novo from other loci or maintained in a telomerase-independent manner. Other extremities did not end with telomeres but only with repeated subtelomeric sequences. The subtelomeric elements, including rDNA, were massively rearranged and involved in breakage-fusion-bridge cycles, translocations, recombinations, and chromosome circularization. These events were established progressively over time and displayed heterogeneity at the subpopulation level. New telomere-capped extremities composed of sequences originating from more internal genomic regions were associated with high DNA methylation, suggesting that de novo heterochromatin formation contributes to the restoration of chromosome end stability in C. reinhardtii The diversity of alternative strategies present in the same organism to maintain chromosome integrity and the variety of rearrangements found in telomerase mutants are remarkable, and illustrate genome plasticity at short timescales.


Assuntos
Chlamydomonas reinhardtii , Telomerase , Telomerase/genética , Telomerase/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Heterocromatina , Telômero/genética , Telômero/metabolismo , Translocação Genética , Instabilidade Cromossômica , Instabilidade Genômica
2.
Plant Cell ; 32(4): 1179-1203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988263

RESUMO

In the green alga Chlamydomonas (Chlamydomonas r einhardtii), chloroplast gene expression is tightly regulated posttranscriptionally by gene-specific trans-acting protein factors. Here, we report the identification of the octotricopeptide repeat protein MTHI1, which is critical for the biogenesis of chloroplast ATP synthase oligomycin-sensitive chloroplast coupling factor. Unlike most trans-acting factors characterized so far in Chlamydomonas, which control the expression of a single gene, MTHI1 targets two distinct transcripts: it is required for the accumulation and translation of atpH mRNA, encoding a subunit of the selective proton channel, but it also enhances the translation of atpI mRNA, which encodes the other subunit of the channel. MTHI1 targets the 5' untranslated regions of both the atpH and atpI genes. Coimmunoprecipitation and small RNA sequencing revealed that MTHI1 binds specifically a sequence highly conserved among Chlorophyceae and the Ulvale clade of Ulvophyceae at the 5' end of triphosphorylated atpH mRNA. A very similar sequence, located ∼60 nucleotides upstream of the atpI initiation codon, was also found in some Chlorophyceae and Ulvale algae species and is essential for atpI mRNA translation in Chlamydomonas. Such a dual-targeted trans-acting factor provides a means to coregulate the expression of the two proton hemi-channels.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , ATPases de Cloroplastos Translocadoras de Prótons/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Subunidades Proteicas/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Sequência de Bases , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Genes Reporter , Teste de Complementação Genética , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Subunidades Proteicas/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nucleic Acids Res ; 49(13): 7571-7587, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34165564

RESUMO

In most eukaryotes, subtelomeres are dynamic genomic regions populated by multi-copy sequences of different origins, which can promote segmental duplications and chromosomal rearrangements. However, their repetitive nature has complicated the efforts to sequence them, analyse their structure and infer how they evolved. Here, we use recent genome assemblies of Chlamydomonas reinhardtii based on long-read sequencing to comprehensively describe the subtelomere architecture of the 17 chromosomes of this model unicellular green alga. We identify three main repeated elements present at subtelomeres, which we call Sultan, Subtile and Suber, alongside three chromosome extremities with ribosomal DNA as the only identified component of their subtelomeres. The most common architecture, present in 27 out of 34 subtelomeres, is a heterochromatic array of Sultan elements adjacent to the telomere, followed by a transcribed Spacer sequence, a G-rich microsatellite and transposable elements. Sequence similarity analyses suggest that Sultan elements underwent segmental duplications within each subtelomere and rearranged between subtelomeres at a much lower frequency. Analysis of other green algae reveals species-specific repeated elements that are shared across subtelomeres, with an overall organization similar to C. reinhardtii. This work uncovers the complexity and evolution of subtelomere architecture in green algae.


Assuntos
Chlamydomonas reinhardtii/genética , Evolução Molecular , Telômero , Clorófitas/genética , Cromatina/metabolismo , Cromossomos de Plantas , DNA Ribossômico , Sequências Repetitivas Dispersas , Repetições de Microssatélites , Sequências de Repetição em Tandem , Transcrição Gênica
4.
Plant J ; 98(6): 1033-1047, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30809889

RESUMO

In Chlamydomonas reinhardtii, chloroplast gene expression is tightly regulated post-transcriptionally by gene-specific trans-acting protein factors. Here, we report the molecular identification of an OctotricoPeptide Repeat (OPR) protein, MDA1, which governs the maturation and accumulation of the atpA transcript, encoding subunit α of the chloroplast ATP synthase. As does TDA1, another OPR protein required for the translation of the atpA mRNA, MDA1 targets the atpA 5'-untranslated region (UTR). Unexpectedly, it binds within a region of approximately 100 nt in the middle of the atpA 5'-UTR, at variance with the stabilization factors characterized so far, which bind to the 5'-end of their target mRNA to protect it from 5' → 3' exonucleases. It binds the same region as TDA1, with which it forms a high-molecular-weight complex that also comprises the atpA mRNA. This complex dissociates upon translation, promoting degradation of the atpA mRNA. We suggest that atpA transcripts, once translated, enter the degradation pathway because they cannot reassemble with MDA1 and TDA1, which preferentially bind to de novo transcribed mRNAs.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Proteínas de Plantas/metabolismo , Estabilidade de RNA , Regiões 5' não Traduzidas/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/genética , ATPases de Cloroplastos Translocadoras de Prótons/genética , Cloroplastos/metabolismo , Modelos Biológicos , Complexos Multiproteicos , Mutação , Proteínas de Plantas/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética
5.
Nucleic Acids Res ; 44(6): 2795-805, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26908651

RESUMO

Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies.


Assuntos
Archaea/química , Proteínas Arqueais/química , DNA Topoisomerases Tipo I/química , DNA Super-Helicoidal/química , Proteínas Mitocondriais/química , Sequência de Aminoácidos , Archaea/classificação , Archaea/enzimologia , Proteínas Arqueais/antagonistas & inibidores , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Camptotecina/química , Clonagem Molecular , Cumarínicos/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/química , Temperatura Alta , Humanos , Isoquinolinas/química , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Inibidores da Topoisomerase I/química
6.
PLoS One ; 19(2): e0297014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330024

RESUMO

Recent advances in long-read sequencing technologies have enabled the complete assembly of eukaryotic genomes from telomere to telomere by allowing repeated regions to be fully sequenced and assembled, thus filling the gaps left by previous short-read sequencing methods. Furthermore, long-read sequencing can also help characterizing structural variants, with applications in the fields of genome evolution or cancer genomics. For many organisms, the main bottleneck to sequence long reads remains the lack of robust methods to obtain high-molecular-weight (HMW) DNA. For this purpose, we developed an optimized protocol to extract DNA suitable for long-read sequencing from the unicellular green alga Chlamydomonas reinhardtii, based on CTAB/phenol extraction followed by a size selection step for long DNA molecules. We provide validation results for the extraction protocol, as well as statistics obtained with Oxford Nanopore Technologies sequencing.


Assuntos
Chlamydomonas reinhardtii , Análise de Sequência de DNA/métodos , Chlamydomonas reinhardtii/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , Genômica/métodos
7.
Plant J ; 67(6): 1055-66, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21623973

RESUMO

After endosymbiosis, organelles lost most of their initial genome. Moreover, expression of the few remaining genes became tightly controlled by the nucleus through trans-acting protein factors that are required for post-transcriptional expression (maturation/stability or translation) of a single (or a few) specific organelle target mRNA(s). Here, we characterize the nucleus-encoded TDA1 factor, which is specifically required for translation of the chloroplast atpA transcript that encodes subunit α of ATP synthase in Chlamydomonas reinhardtii. The sequence of TDA1 contains eight copies of a degenerate 38-residue motif, that we named octotrico peptide repeat (OPR), which has been previously described in a few other trans-acting factors targeted to the C. reinhardtii chloroplast. Interestingly, a proportion of the untranslated atpA transcripts are sequestered into high-density, non-polysomic, ribonucleoprotein complexes. Our results suggest that TDA1 has a dual function: (i) trapping a subset of untranslated atpA transcripts into non-polysomic complexes, and (ii) translational activation of these transcripts. We discuss these results in light of our previous observation that only a proportion of atpA transcripts are translated at any given time in the chloroplast of C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/genética , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões 5' não Traduzidas , Motivos de Aminoácidos , Sequência de Aminoácidos , Núcleo Celular/genética , Chlamydomonas reinhardtii/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Cloroplastos/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , Ribonucleoproteínas/metabolismo
8.
C R Biol ; 345(2): 15-38, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847462

RESUMO

Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.


Les microalgues, organismes aquatiques majeurs, sont responsables de la moitié de l'activité photosynthétique planétaire. La lumière représente pour les microalgues une source d'énergie ainsi que d'informations sur leur environnement. Ces 20 dernières années, les progrès en génomique et biologie des écosystèmes et la disponibilité de ressources génétiques pour de nouvelles espèces modèles ont permis d'apprécier leur importance dans les écosystèmes globaux. Néanmoins, du fait de leur grande diversité et de leur histoire évolutive complexe, notre compréhension de la biologie des microalgues reste limitée. Nous nous concentrons ici sur la photosynthèse, la photoperception, et la biogenèse des plastes chez l'algue verte Chlamydomonas reinhardtii et les diatomées marines. Nous décrivons comment l'étude des processus gouvernés par la lumière ouvre de nouvelles perspectives pour l'étude de la biodiversité fonctionnelle des microalgues. Nous soulignons combien seule l'intégration d'études en laboratoire et en contexte environnemental et le dialogue entre les communautés scientifiques concernées permettront de comprendre la vie de ces phototrophes dans des écosystèmes complexes, et d'évaluer correctement les conséquences des changements environnementaux sur les milieux aquatiques.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Ecossistema , Fotossíntese , Biodiversidade , Chlamydomonas reinhardtii/genética
11.
Sci Rep ; 9(1): 1845, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755624

RESUMO

In eukaryotes, telomeres determine cell proliferation potential by triggering replicative senescence in the absence of telomerase. In Saccharomyces cerevisiae, senescence is mainly dictated by the first telomere that reaches a critically short length, activating a DNA-damage-like response. How the corresponding signaling is modulated by the telomeric structure and context is largely unknown. Here we investigated how subtelomeric elements of the shortest telomere in a telomerase-negative cell influence the onset of senescence. We found that a 15 kb truncation of the 7L subtelomere widely used in studies of telomere biology affects cell growth when combined with telomerase inactivation. This effect is likely not explained by (i) elimination of sequence homology at chromosome ends that would compromise homology-directed DNA repair mechanisms; (ii) elimination of the conserved subtelomeric X-element; (iii) elimination of a gene that would become essential in the absence of telomerase; and (iv) heterochromatinization of inner genes, causing the silencing of an essential gene in replicative senescent cells. This works contributes to better delineate subtelomere functions and their impact on telomere biology.


Assuntos
Estruturas Cromossômicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Telomerase/metabolismo , Telômero/genética , Ciclo Celular , Divisão Celular , Senescência Celular , Estruturas Cromossômicas/metabolismo , Reparo de DNA por Recombinação , Encurtamento do Telômero
12.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160377

RESUMO

Telomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telomerase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas reinhardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. reinhardtii (TTTTAGGG)n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 3' overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii/genética , Telomerase/genética , Telômero/genética , Sequência de Aminoácidos , Sequência de Bases , Variação Genética , Polimorfismo de Fragmento de Restrição , Sequências Repetitivas de Ácido Nucleico , Telomerase/química , Telomerase/metabolismo , Homeostase do Telômero , Encurtamento do Telômero
14.
PLoS One ; 10(3): e0118987, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760649

RESUMO

To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.


Assuntos
Divisão Celular , Chlamydomonas reinhardtii/citologia , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Células Cultivadas , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip
15.
Praxis (Bern 1994) ; 103(16): 961-4, 2014 Aug 06.
Artigo em Alemão | MEDLINE | ID: mdl-25097165

RESUMO

We report the case of a 81-year-old male with a long standing history of progressive dyspnea and depression. In spite of extensive cardiological, pneumological and neurological investigations the reason for his complaints remained unclear. Known for a parasellar meningioma MRI scans were repeated, but were shown to be stable. Finally endocrine investigations revealed the presence of a panhypopituitarism explaining the unusual clinical picture.


Assuntos
Transtorno Depressivo/etiologia , Dispneia/etiologia , Hipopituitarismo/diagnóstico , Neoplasias Meníngeas/diagnóstico , Meningioma/diagnóstico , Idoso de 80 Anos ou mais , Encéfalo/patologia , Diagnóstico Diferencial , Feminino , Humanos , Imageamento por Ressonância Magnética , Hipófise/patologia
16.
Annu Rev Genet ; 42: 463-515, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18983262

RESUMO

Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.


Assuntos
Fotossíntese/genética , Fotossíntese/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Biofísica , Chlamydomonas/genética , Chlamydomonas/fisiologia , Transporte de Elétrons , Expressão Gênica , Modelos Biológicos , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Regulon , Transdução de Sinais
17.
Plant J ; 48(1): 1-16, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16972865

RESUMO

Phototropin (PHOT) is a photoreceptor involved in a variety of blue-light-elicited physiological processes including phototropism, chloroplast movement and stomatal opening in plants. The work presented here tests whether PHOT is involved in expression of light-regulated genes in Chlamydomonas reinhardtii. When C. reinhardtii was transferred from the dark to very low-fluence rate white light, there was a substantial increase in the level of transcripts encoding glutamate-1-semialdehyde aminotransferase (GSAT), phytoene desaturase (PDS) and light-harvesting polypeptides (e.g. LHCBM6). Increased levels of these transcripts were also elicited by low-intensity blue light, and this blue-light stimulation was suppressed in three different RNAi strains that synthesize low levels of PHOT. The levels of GSAT and LHCBM6 transcripts also increased following exposure of algal cells to low-intensity red light (RL). The red-light-dependent increase in transcript abundance was not affected by the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, implying that the influence of RL on transcript accumulation was not controlled by cytoplasmic redox conditions, and that a red-light photoreceptor(s) may be involved in regulating the levels of transcripts from specific photosynthesis-related genes in C. reinhardtii. Interestingly, elevated GSAT and LHCBM6 transcript levels in RL were significantly reduced in the PHOT RNAi strains, which raises the possibility of co-action between blue and RL signaling pathways. Microarray experiments indicated that the levels of several transcripts for photosystem (PS) I and II polypeptides were also modulated by PHOT. These data suggest that, in C. reinhardtii, (i) PHOT is involved in blue-light-mediated changes in transcript accumulation, (ii) synchronization of the synthesis of chlorophylls (Chl), carotenoids, Chl-binding proteins and other components of the photosynthetic apparatus is achieved, at least in part, through PHOT-mediated signaling, and (iii) a red-light photoreceptor can also influence levels of certain transcripts associated with photosynthetic function, although its action requires normal levels of PHOT.


Assuntos
Proteínas de Algas/metabolismo , Carotenoides/biossíntese , Chlamydomonas reinhardtii/metabolismo , Clorofila/biossíntese , Flavoproteínas/fisiologia , Proteínas de Algas/genética , Animais , Apoproteínas/genética , Apoproteínas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Criptocromos , Diurona/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Regulação da Expressão Gênica , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases/genética , Oxirredutases/metabolismo , Fotossíntese , Fototropismo , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
18.
Curr Genet ; 49(2): 106-24, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16333659

RESUMO

The availability of genome sequences makes it possible to develop microarrays that can be used for profiling gene expression over developmental time, as organisms respond to environmental challenges, and for comparison between wild-type and mutant strains under various conditions. The desired characteristics of microarrays (intense signals, hybridization specificity and extensive coverage of the transcriptome) were not fully met by the previous Chlamydomonas reinhardtii microarray: probes derived from cDNA sequences (approximately 300 bp) were prone to some nonspecific cross-hybridization and coverage of the transcriptome was only approximately 20%. The near completion of the C. reinhardtii nuclear genome sequence and the availability of extensive cDNA information have made it feasible to improve upon these aspects. After developing a protocol for selecting a high-quality unigene set representing all known expressed sequences, oligonucleotides were designed and a microarray with approximately 10,000 unique array elements (approximately 70 bp) covering 87% of the known transcriptome was developed. This microarray will enable researchers to generate a global view of gene expression in C. reinhardtii. Furthermore, the detailed description of the protocol for selecting a unigene set and the design of oligonucleotides may be of interest for laboratories interested in developing microarrays for organisms whose genome sequences are not yet completed (but are nearing completion).


Assuntos
Chlamydomonas reinhardtii/genética , Perfilação da Expressão Gênica , Genes de Protozoários , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Núcleo Celular/genética , Chlamydomonas reinhardtii/metabolismo , Bases de Dados de Ácidos Nucleicos , Genoma de Protozoário , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Enxofre/deficiência , Enxofre/metabolismo
19.
Plant J ; 31(2): 149-60, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12121445

RESUMO

We performed a systematic investigation of the quantitative relationship between genome copy number, transcription, transcript abundance and synthesis of photosynthetic proteins in the chloroplast of the green algae Chlamydomonas reinhardtii grown either in mixotrophic or phototrophic conditions. The chloroplast gene copy number is lower in the latter condition and the half-life and accumulation levels of most chloroplast transcripts are significantly reduced, although the relative rates of protein synthesis remain similar. Our study shows that, in most instances, chloroplast protein synthesis is poorly sensitive to changes in gene copy number or transcript abundance in the chloroplast. Treatment with 5-fluoro-2'-deoxyuridine, that inhibits chloroplast DNA replication and decreases extensively the number of copies of the chloroplast genome, had limited effects on the abundance of most chloroplast transcripts and little if any effect on the rates of protein synthesis. When using rifampicin, that selectively inhibits chloroplast transcription, we found no direct correlation between the level of transcripts remaining in the chloroplast and the rates of chloroplast protein synthesis. For two chloroplast genes, a 90% decrease in the amount of transcript did not cause a drop in the rate of synthesis of the corresponding protein product. Overall, our results demonstrate that there is no gene dosage effect in the chloroplast and that transcript abundance is not limiting in the expression of chloroplast-encoded protein.


Assuntos
Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Biossíntese de Proteínas , RNA de Plantas/metabolismo , Transcrição Gênica , Animais , Chlamydomonas reinhardtii/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Floxuridina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Rifampina/farmacologia , Transcrição Gênica/efeitos dos fármacos
20.
EMBO J ; 22(3): 651-6, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12554665

RESUMO

Initiation codon context is an important determinant of translation initiation rates in both prokaryotes and eukaryotes. Such sequences include the Shine- Dalgarno ribosome-binding site, as well as other motifs surrounding the initiation codon. One proposed interaction is between the base immediately preceding the initiation codon (-1 position) and the nucleotide 3' to the tRNAf(Met) anticodon, at position 37. Adenine is conserved at position 37, and a uridine at -1 has been shown in vitro to favor initiation. We have tested this model in vivo, by manipulating the chloroplast of the green alga Chlamydomonas reinhardtii, where the translational machinery is prokaryotic in nature. We show that translational defects imparted by mutations at the petA -1 position can be suppressed by compensatory mutations at position 37 of an ectopically expressed tRNA(fMet). The mutant tRNAs are fully aminoacylated and do not interfere with the translation of other proteins. Although this extended base pairing is not an absolute requirement for initiation, it may convey added specificity to transcripts carrying non-standard initiation codons, and/or preserve translational fidelity under certain stress conditions.


Assuntos
Anticódon/genética , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Códon/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Animais , Pareamento de Bases , Chlamydomonas reinhardtii/metabolismo , Citocromos/metabolismo , Citocromos f , Mutação , Conformação de Ácido Nucleico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA