Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1308: 589-599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33861460

RESUMO

Fatty Acid Binding-Protein 5 (FABP5) is a cytoplasmic protein, which binds long-chain fatty acids and other hydrophobic ligands. This protein is implicated in several physiological processes including mitochondrial ß-oxidation and transport of fatty acids, membrane phospholipid synthesis, lipid metabolism, inflammation and pain. In the present study, we used molecular docking tools to determine the possible interaction of FABP5 with six selected compounds retrieved form Drugbank. Our results showed that FABP5 binding pocket included 31 polar and non-polar amino acids, and these residues may be related to phosphorylation, acetylation, ubiquitylation, and mono-methylation. Docking results showed that the most energetically favorable compounds are NADH (-9.12 kcal/mol), 5'-O-({[(Phosphonatooxy)phosphinato]oxy}phosphinato)adenosine (-8.62 kcal/mol), lutein (-8.25 kcal/mol), (2S)-2-[(4-{[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-6-pteridinyl)methyl]amino}benzoyl)amino]pentanedioate (-7.17 kcal/mol), Pteroyl-L-glutamate (-6.86 kcal/mol) and (1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10-triene-1,3,25-triol (-6.79 kcal/mol). Common interacting residues of FABP5 with nutraceuticals included SER16, LYS24, LYS34, LYS40 and LYS17. Further, we used the SwissADME server to determine the physicochemical and pharmacokinetic characteristics and to predict the ADME parameters of the selected nutraceuticals after molecular analysis by docking with the FABP5 protein. Amongst all compounds, pteroyl-L-glutamate is the only one meeting the Lipinski's rule of five criteria, demonstrating its potential pharmacological use. Finally, our results also suggest the importance of FABP5 in mediating the anti-inflammatory activity of the nutraceutical compounds.


Assuntos
Anti-Inflamatórios , Proteínas de Ligação a Ácido Graxo , Suplementos Nutricionais , Proteínas de Ligação a Ácido Graxo/genética , Ligantes , Simulação de Acoplamento Molecular
2.
J Cell Physiol ; 234(3): 2051-2057, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246411

RESUMO

Oxidative stress and mitochondrial dysfunction induced by metabolic insults are both hallmarks of various neurological disorders, whereby neuronal cells are severely affected by decreased glucose supply to the brain. Likely injured, astrocytes are important for neuronal homeostasis and therapeutic strategies should be directed towards improving astrocytic functions to improve brain's outcome. In the present study, we aimed to assess the actions of raloxifene, a selective estrogen receptor modulator in astrocytic cells under glucose deprivation. Our findings indicated that pretreatment with 1 µM raloxifene results in an increase in cell viability and attenuated nuclei fragmentation. Raloxifene's actions also rely on the reduction of oxidative stress and preservation of mitochondrial function in glucose-deprived astrocytic cells, suggesting the possible direct effects of this compound on mitochondria. In conclusion, our results demonstrate that raloxifene's protective actions might be mediated in part by astrocytes in the setting of a metabolic insult.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Fármacos Neuroprotetores/farmacologia , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Astrócitos/citologia , Cardiolipinas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Front Neuroendocrinol ; 50: 18-30, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28974386

RESUMO

Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder. Sex is an important factor in the development of PD, as reflected by the fact that it is more common in men than in women by an approximate ratio of 2:1. Our hypothesis is that differences in PD among men and women are highly determined by sex-dependent differences in the nigrostriatal dopaminergic system, which arise from environmental, hormonal and genetic influences. Sex hormones, specifically estrogens, influence PD pathogenesis and might play an important role in PD differences between men and women. The objective of this review was to discuss the PD physiopathology and point out sex differences in nigrostriatal degeneration, symptoms, genetics, responsiveness to treatments and biochemical and molecular mechanisms among patients suffering from this disease. Finally, we discuss the role estrogens may have on PD sex differences.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Doença de Parkinson , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia
4.
Neuroendocrinology ; 108(2): 142-160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30391959

RESUMO

Traumatic brain injury (TBI) is a serious public health problem. It may result in severe neurological disabilities and in a variety of cellular metabolic alterations for which available therapeutic strategies are limited. In the last decade, the use of estrogenic compounds, which activate protective mechanisms in astrocytes, has been explored as a potential experimental therapeutic approach. Previous works have suggested estradiol (E2) as a neuroprotective hormone that acts in the brain by binding to estrogen receptors (ERs). Several steroidal and nonsteroidal estrogenic compounds can imitate the effects of estradiol on ERs. These include hormonal estrogens, phytoestrogens and synthetic estrogens, such as selective ER modulators or tibolone. Current evidence of the role of astrocytes in mediating protective actions of estrogenic compounds after TBI is reviewed in this paper. We conclude that the use of estrogenic compounds to modulate astrocytic properties is a promising therapeutic approach for the treatment of TBI.


Assuntos
Astrócitos/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Estrogênios/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores de Estrogênio/metabolismo , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Estrogênios/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia
5.
J Anim Ecol ; 87(5): 1364-1382, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29741769

RESUMO

The timing and duration of life-history stages (LHSs) within the annual cycle can be affected by local environmental cues which are integrated through endocrine signalling mechanisms and changes in protein function. Most animals express a single LHS within a given period of the year because synchronous expression of LHSs is thought to be too costly energetically. However, in very rare and extremely stable conditions, breeding and moult have been observed to overlap extensively in rufous-collared sparrows (Zonotrichia capensis) living in valleys of the Atacama Desert-one of the most stable and aseasonal environments on Earth. To examine how LHS traits at different levels of organization are affected by environmental variability, we compared the temporal organization and duration of LHSs in populations in the Atacama Desert with those in the semiarid Fray Jorge National Park in the north of Chile-an extremely seasonal climate but with unpredictable droughts and heavy rainy seasons. We studied the effects of environmental variability on morphological variables related to body condition, endocrine traits and proteome. Birds living in the seasonal environment had a strict temporal division of LHSs, while birds living in the aseasonal environment failed to maintain a temporal division of LHSs resulting in direct overlap of breeding and moult. Further, higher circulating glucocorticoids and androgen concentrations were found in birds from seasonal compared to aseasonal populations. Despite these differences, body condition variables and protein expression were not related to the degree of seasonality but rather showed a strong relationship with hormone levels. These results suggest that animals adjust to their environment through changes in behavioural and endocrine traits and may be limited by less labile traits such as morphological variables or expression of specific proteins under certain circumstances. These data on free-living birds shed light on how different levels of life-history organization within an individual are linked to increasing environmental heterogeneity.


Assuntos
Pardais , Animais , Chile , Estágios do Ciclo de Vida , Proteoma , Estações do Ano
6.
Neurochem Res ; 40(10): 2032-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24970109

RESUMO

Tobacco consumption is far higher among a number of psychiatric and neurological diseases, supporting the notion that some component(s) of tobacco may underlie the oft-reported reduction in associated symptoms during tobacco use. Popular dogma holds that this component is nicotine. However, increasing evidence support theories that cotinine, the main metabolite of nicotine, may underlie at least some of nicotine's actions in the nervous system, apart from its adverse cardiovascular and habit forming effects. Though similarities exist, disparate and even antagonizing actions between cotinine and nicotine have been described both in terms of behavior and physiology, underscoring the need to further characterize this potentially therapeutic compound. Cotinine has been shown to be psychoactive in humans and animals, facilitating memory, cognition, executive function, and emotional responding. Furthermore, recent research shows that cotinine acts as an antidepressant and reduces cognitive-impairment associated with disease and stress-induced dysfunction. Despite these promising findings, continued focus on this potentially safe alternative to tobacco and nicotine use is lacking. Here, we review the effects of cotinine, including comparisons with nicotine, and discuss potential mechanisms of cotinine-specific actions in the central nervous system which are, to date, still being elucidated.


Assuntos
Antidepressivos/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Cotinina/farmacologia , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Humanos , Receptores Nicotínicos/efeitos dos fármacos
7.
Front Neurosci ; 17: 1179611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255751

RESUMO

Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.

8.
Front Cardiovasc Med ; 9: 879726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463745

RESUMO

Electronic cigarettes or e-cigarettes are the most frequently used tobacco product among adolescents. Despite the widespread use of e-cigarettes and the known detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the cardiovascular system are not well-known. Several in vitro and in vivo studies delineating the mechanisms of the impact of e-cigarettes on the cardiovascular system have been published. These include mechanisms associated with nicotine or other components of the aerosol or thermal degradation products of e-cigarettes. The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA damage, and macrophage activation are prominent effects of e-cigarettes. Additionally, oxidative stress and inflammation are unifying mechanisms at many levels of the cardiovascular impairment induced by e-cigarette exposure. This review outlines the contribution of e-cigarettes in the development of cardiovascular diseases and their molecular underpinnings.

9.
Front Neurosci ; 15: 665820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616271

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.

10.
Front Pharmacol ; 12: 644103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093183

RESUMO

In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.

11.
Chem Biol Interact ; 345: 109528, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34022192

RESUMO

Statins are the low-density lipoproteins (LDL)-cholesterol-lowering drugs of first choice and are used to prevent the increased risk of cardiovascular and cerebrovascular diseases. Although some of their effects are well known, little is known about their ability to regulate other lipid-related proteins which control apoptotic mechanisms. The aim of this study was to explore whether statins can bind to cell death-inducing DNA fragmentation factor-like effector A (CIDEA), which might be a possible pleiotropic mechanism of action of these drugs on the modulation of apoptosis and lipid metabolism. The structures of statins were subjected to molecular docking and dynamics with the human CIDEA protein to investigate the interaction pattern and identify which residues are important. The docking results indicated that atorvastatin and rosuvastatin showed the best interaction energy (-8.51 and -8.04 kcal/mol, respectively) followed by fluvastatin (-7.39), pitavastatin (-6.5), lovastatin (-6.23), pravastatin (-6.04) and simvastatin (-5.29). Atorvastatin and rosuvastatin were further subjected to molecular dynamics at 50 ns with CIDEA and the results suggested that rosuvastatin-CIDEA complex had lower root-mean square deviation and root-mean square fluctuation when compared with atorvastatin-CIDEA. Since two arginine residues -ARG19 and ARG22-were identified to be common for the interaction with CIDEA, a single-point mutation was induced in these residues to determine whether they are important for binding interaction. Mutation of these two residues seemed to affect mostly the interaction of atorvastatin with CIDEA, suggesting that they are important for the binding and therefore indicate another possible metabolic mechanism of the pleiotropic effects of this statin.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular/efeitos dos fármacos , Simulação por Computador , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Humanos , Simulação de Acoplamento Molecular , Mutação Puntual , Ligação Proteica , Conformação Proteica
12.
Front Aging Neurosci ; 12: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32076403

RESUMO

Parkinson's disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.

13.
Front Pharmacol ; 11: 303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300297

RESUMO

Fear memory extinction (FE) is an important therapeutic goal for Posttraumatic stress disorder (PTSD). Cotinine facilitates FE in rodents, in part due to its inhibitory effect on the amygdala by the glutamatergic projections from the medial prefrontal cortex (mPFC). The cellular and behavioral effects of infusing cotinine into the mPFC on FE, astroglia survival, and the expression of bone morphogenetic proteins (BMP) 2 and 8, were assessed in C57BL/6 conditioned male mice. The role of the α4ß2- and α7 nicotinic acetylcholine receptors (nAChRs) on cotinine's actions were also investigated. Cotinine infused into the mPFC enhanced contextual FE and decreased BMP8 expression by a mechanism dependent on the α7nAChRs. In addition, cotinine increased BMP2 expression and prevented the loss of GFAP + astrocytes in a form independent on the α7nAChRs but dependent on the α4ß2 nAChRs. This evidence suggests that cotinine exerts its effect on FE by modulating nAChRs signaling in the brain.

14.
J Neuroendocrinol ; 32(1): e12776, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31334878

RESUMO

The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.


Assuntos
Encéfalo/metabolismo , Estrogênios/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Inflamação/metabolismo , Neuroglia/metabolismo , Animais , Encéfalo/patologia , Humanos , Inflamação/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/patologia , Transdução de Sinais/fisiologia
15.
Appl Biochem Biotechnol ; 187(1): 298-309, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29938332

RESUMO

The fungus Penicillium purpurogenum grows on a variety of natural carbon sources and secretes a large number of enzymes which degrade the polysaccharides present in lignocellulose. In this work, the gene coding for a novel endoxylanase has been identified in the genome of the fungus. This gene (xynd) possesses four introns. The cDNA has been expressed in Pichia pastoris and characterized. The enzyme, XynD, belongs to family 10 of the glycoside hydrolases. Mature XynD has a calculated molecular weight of 40,997. It consists of 387 amino acid residues with an N-terminal catalytic module, a linker rich in ser and thr residues, and a C-terminal family 1 carbohydrate-binding module. XynD shows the highest identity (97%) to a putative endoxylanase from Penicillium subrubescens but its highest identity to a biochemically characterized xylanase (XYND from Penicillium funiculosum) is only 68%. The enzyme has a temperature optimum of 60 °C, and it is highly stable in its pH optimum range of 6.5-8.5. XynD is the fourth biochemically characterized endoxylanase from P. purpurogenum, confirming the rich potential of this fungus for lignocellulose biodegradation. XynD, due to its wide pH optimum and stability, may be a useful enzyme in biotechnological procedures related to this biodegradation process.


Assuntos
Endo-1,4-beta-Xilanases/química , Proteínas Fúngicas/química , Lignina/química , Penicillium/enzimologia , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Lignina/metabolismo , Penicillium/genética , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
16.
Mol Neurobiol ; 56(10): 6902-6927, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30941733

RESUMO

Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Células-Tronco Mesenquimais/metabolismo , Neuroproteção , Proteoma/metabolismo , Animais , Humanos , Transplante de Células-Tronco Mesenquimais , Modelos Biológicos
17.
Mol Neurobiol ; 56(4): 2339-2351, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29982985

RESUMO

Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.


Assuntos
Astrócitos/patologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Degeneração Neural/patologia , Neuroglobina/farmacologia , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Humanos
18.
Mol Neurobiol ; 56(4): 2352, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30027339

RESUMO

The original version of this article unfortunately contained a typo error. The name of author "Ghulam Md Ashrad" should be written as "Ghulam Md Ashraf".

19.
Mol Cell Endocrinol ; 486: 65-78, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822454

RESUMO

Palmitic acid (PA) induces several metabolic and molecular changes in astrocytes, and, it is involved in pathological conditions related to neurodegenerative diseases. Previously, we demonstrated that tibolone, a synthetic steroid with estrogenic, progestogenic and androgenic actions, protects cells from mitochondrial damage and morphological changes induced by PA. Here, we have evaluated which estrogen receptor is involved in protective actions of tibolone and analyzed whether tibolone reverses gene expression changes induced by PA. Tibolone actions on astrocytic cells were mimicked by agonists of estrogen receptor α (ERα) and ß (ERß), but the blockade of both ERs suggested a predominance of ERß on mitochondria membrane potential. Expression analysis showed a significant effect of tibolone on genes associated with inflammation such as IL6, IL1B and miR155-3p. It is noteworthy that tibolone attenuated the increased expression of TERT, TERC and DNMT3B genes induced by palmitic acid. Our results suggest that tibolone has anti-inflammatory effects and can modulate pathways associated with DNA methylation and telomeric complex. However, future studies are needed to elucidate the role of epigenetic mechanisms and telomere-associated proteins on tibolone actions.


Assuntos
Astrócitos/metabolismo , Receptor alfa de Estrogênio/metabolismo , Inflamação/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Norpregnenos/farmacologia , Ácido Palmítico/toxicidade , Astrócitos/efeitos dos fármacos , Linhagem Celular , Epigênese Genética/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Humanos , Inflamação/genética , Nitrilas/farmacologia , Fenóis , Substâncias Protetoras/farmacologia , Pirazóis , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Fatores de Transcrição/metabolismo
20.
Mol Neurobiol ; 56(2): 1221-1232, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29881944

RESUMO

Parkinson's disease (PD) is a neurodegenerative pathology characterized by resting tremor, rigidity, bradykinesia, and loss of dopamine-producing neurons in the pars compacta of the substantia nigra in the central nervous system (CNS) that result in dopamine depletion in the striatum. Oxidative stress has been documented as a key pathological mechanism for PD. Epidemiological studies have shown that smokers have a lower incidence of PD. In this aspect, different studies have shown that nicotine, a chemical compound found in cigarette, is capable of exerting beneficial effects in PD patients, but it can hardly be used as a therapeutic agent because of its inherent toxicity. Several studies have suggested that the use of nicotine analogs can have the same benefits as nicotine but lack its toxicity. In this study, we assessed the effects of two nicotine analogs, (E)-nicotinaldehyde O-cinnamyloxime and 3-(pyridin-3-yl)-3a,4,5,6,7,7a-hexahidrobenzo[d]isoxazole, in an in vitro model of PD. Initially, we performed a computational prediction of the molecular interactions between the nicotine analogs with the α7 nicotinic acetylcholine receptor (nAChR). Furthermore, we evaluated the effect of nicotine, nicotine analogs and rotenone on cell viability and reactive oxygen species (ROS) production in the SH-SY5Y neuronal cell line to validate possible protective effects. We observed that pre-treatment with nicotine or (E)-nicotinaldehyde O-cinnamyloxime (10 µM) improved cell viability and diminished ROS production in SH-SY5Y cells insulted with rotenone. These findings suggest that nicotine analogs have a potential protective effect against oxidative damage in brain pathologies.


Assuntos
Morte Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nicotina/análogos & derivados , Doença de Parkinson Secundária/tratamento farmacológico , Rotenona/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neurônios/metabolismo , Nicotina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA