Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Radiol Prot ; 41(4)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33975295

RESUMO

The International Commission on Radiation Units and Measurements (ICRU) Report Number 95 (2020 Operational quantities for external radiation exposureICRU Rep. 95 J. ICRU20) recommends new definitions ffor operational quantities as estimators of the International Commission on Radiological Protection radiation protection quantities. As part of this report, dose coefficients for neutron fluences are included for energies from 10-9-50 MeV. For lens of the eye dosimetry, several changes in the ICRU recommended quantities are of particular interest. First, an updated eye model is used that includes segmentation of the sensitive lens region. In addition, the use of absorbed dose instead of dose equivalent has been selected as the appropriate operational quantity since deterministic (i.e. non-stochastic) effects are of primary importance for the lens of the eye. The ICRU report also addresses computational parameters, such as absorbed dose tally volumes, depths, source areas and source rotational angles. In this work, neutron dose coefficients calculated for the lens of the eye in support of the ICRU report are presented. Dose coefficients for mono-energetic neutrons and reference neutron spectra are presented. The source is a parallel beam, and the mono-energetic dose coefficients are provided for rotational angles with respect to the front face of the head ranging from 0°-90°. In addition, monoenergetic dose coefficients for the parallel beam incident on the back of the head (180°) and for a rotational source geometry where the head is irradiated from all angles are reported. For all scenarios, absorbed doses to the complete lens and the sensitive volume of each eye were calculated. Eye lens absorbed dose coefficients,Dp,slab(3,0)/Φ, were also calculated in an ICRU tissue slab phantom at a depth of 3 mm for a parallel beam irradiating the slab perpendicular to the front face, and these results are compared to the values determined using the eye phantom.


Assuntos
Cristalino , Proteção Radiológica , Nêutrons , Doses de Radiação , Radiometria
2.
J Radiol Prot ; 40(2): 554-582, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32176871

RESUMO

A draft report by the International Commission on Radiation Units and Measurements (ICRU) Report Committee 26 (RC26) will recommend alternative definitions of the operational quantities that are better estimators of radiation protection quantities. Dose coefficients for use with physical field quantities-fluence and, for photons, air kerma-are given for various particle types over a broad energy range. For the skin dosimetry, several changes are of particular interest. Specifically, the use of absorbed dose instead of dose equivalent has been selected as the operational quantity since deterministic effects are of primary interest in the skin. In addition, newly recommended phantoms are specified for computing the operational dose coefficients. The report also addresses computational approaches such as tally volumes, depths, source areas, and rotational angles. In this work, dose coefficients calculated for local skin in support of the ICRU report are presented. Energy-dependent dose coefficients were calculated in phantoms specified for the trunk (slab), the ankle or wrist (pillar), and the finger (rod). The phantom specifications in this work were taken directly from the draft report. Full transport of secondary charged particles from neutron interactions was performed and an analysis of the depth-dose profiles in the slab phantom is presented, The last complete set of neutron dose coefficients for the extremities was published more than 25 years ago. Given the limited data available, it is difficult for many facilities to obtain clear guidance on how monitoring should be performed and how dosimeters should be calibrated so spectra from commonly encountered neutron sources were used to generate source-specific dose coefficients in each of the phantoms. Both energy-dependent and source-specific dose coefficients are provided for rotational angles up to 180 degrees for the rod and pillar phantoms and up to 75 degrees for the slab phantom.


Assuntos
Extremidades/efeitos da radiação , Nêutrons , Doses de Radiação , Radiometria/métodos , Pele/efeitos da radiação , Humanos , Modelos Anatômicos , Proteção Radiológica
3.
Radiat Environ Biophys ; 56(4): 453-462, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28840329

RESUMO

External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients. In this paper, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.


Assuntos
Exposição Ocupacional/análise , Doses de Radiação , Humanos , Imersão , Masculino , Exposição Ocupacional/normas , Imagens de Fantasmas , Padrões de Referência , Pele/efeitos da radiação
4.
Radiat Environ Biophys ; 56(3): 255-267, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28493137

RESUMO

The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.


Assuntos
Imagens de Fantasmas , Exposição à Radiação/análise , Radiometria/instrumentação , Poluentes Radioativos do Solo/análise , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
5.
J Radiol Prot ; 35(2): 317-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25859888

RESUMO

This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit.


Assuntos
Materiais de Construção/análise , Habitação , Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Cinza Radioativa/análise , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Arquitetura de Instituições de Saúde , Humanos , Modelos Estatísticos , Doses de Radiação , Radiometria/métodos , Estados Unidos
6.
Radiat Prot Dosimetry ; 127(1-4): 131-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17561524

RESUMO

The interpretation of individual activity measurement after a contamination by 241Am or its parent nuclide 241Pu is based on the reference americium (Am) biokinetic model published by the International Commission on Radiological Protection in 1993 [International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides: Part 2 Ingestion dose coefficients. ICRP Publication 67. Ann. ICRP 23(3/4) (1993)]. The authors analysed the new data about Am biokinetics reported afterwards to propose an update of the current model. The most interesting results, from the United States Transuranium and Uranium Registries post-mortem measurement database [Filipy, R. E. and Russel, J. J. The United States Transuranium and Uranium Registries as sources for actinide dosimetry and bioeffects. Radiat. Prot. Dosim. 105(1-4), 185-187 (2003)] and the long-term follow-up of cases of inhalation intake [Malátová, I., Foltánová, S., Becková, V., Filgas, R., Pospísilová, H. and Hölgye, Z. Assessment of occupational doses from internal contamination with 241Am. Radiat. Prot. Dosim. 105(1-4), 325-328 (2003)], seemed to show that the current model underestimates the retention in the massive soft tissues and overestimates the retention in the skeleton and the late urinary excretion. However, a critical review of the data demonstrated that all were not equally reliable and suggested that only a slight revision of the model, possibly involving a change in the balance of activity between massive soft tissues, cortical and trabecular bone surfaces, may be required.


Assuntos
Amerício/farmacocinética , Bioensaio/normas , Modelos Biológicos , Contagem Corporal Total/normas , Carga Corporal (Radioterapia) , Humanos , Internacionalidade , Cinética , Taxa de Depuração Metabólica , Doses de Radiação , Valores de Referência , Sensibilidade e Especificidade
7.
Radiat Prot Dosimetry ; 127(1-4): 174-86, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17545663

RESUMO

For the forthcoming update of organ dose conversion coefficients, the International Commission on Radiological Protection (ICRP) will use voxel-based computational phantoms due to their improved anatomical realism compared with the class of mathematical or stylized phantoms used previously. According to the ICRP philosophy, these phantoms should be representative of the male and female reference adults with respect to their external dimensions, their organ topology and their organ masses. To meet these requirements, reference models of an adult male and adult female have been constructed at the GSF, based on existing voxel models segmented from tomographic images of two individuals whose body height and weight closely resemble the ICRP Publication 89 reference values. The skeleton is a highly complex structure of the body, composed of cortical bone, trabecular bone, red and yellow bone marrow and endosteum ('bone surfaces' in their older terminology). The skeleton of the reference phantoms consists of 19 individually segmented bones and bone groups. Sub-division of these bones into the above-mentioned constituents would be necessary in order to allow a direct calculation of dose to red bone marrow and endosteum. However, the dimensions of the trabeculae, the cavities containing bone marrow and the endosteum layer lining these cavities are clearly smaller than the resolution of a normal CT scan and, thus, these volumes could not be segmented in the tomographic images. As an attempt to represent the gross spatial distribution of these regions as realistically as possible at the given voxel resolution, 48 individual organ identification numbers were assigned to various parts of the skeleton: every segmented bone was subdivided into an outer shell of cortical bone and a spongious core; in the shafts of the long bones, a medullary cavity was additionally segmented. Using the data from ICRP Publication 89 on elemental tissue composition, from ICRU Report 46 on material mass densities, and from ICRP Publication 70 on the distribution of the red bone marrow among and marrow cellularity in individual bones, individual elemental compositions for these segmented bone regions were derived. Thus, most of the relevant source and target regions of the skeleton were provided. Dose calculations using these regions will be based on fluence-to-dose response functions that are multiplied with the particle fluence inside specific bone regions to give the dose quantities of interest to the target tissues.


Assuntos
Osso e Ossos/fisiologia , Modelos Biológicos , Radiometria/métodos , Radiometria/normas , Bioensaio/métodos , Bioensaio/normas , Simulação por Computador , Feminino , Humanos , Internacionalidade , Masculino , Doses de Radiação , Valores de Referência , Eficiência Biológica Relativa , Sensibilidade e Especificidade , Especificidade da Espécie , Distribuição Tecidual
8.
Radiat Prot Dosimetry ; 127(1-4): 214-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17561525

RESUMO

The computer program SEECAL, written by Cristy and Eckerman from the Oak Ridge National Laboratory, USA, calculates specific effective energies (also known as S factors in the MIRD terminology) for an adult male, an adult female and five paediatric ages. Its dosimetric methodology is that of the ICRP. Among other parameters, SEECAL requires input data on specific absorbed fractions (SAF) and utilises those derived from the MIRD-type stylised anthropomorphic phantoms. SEECAL has been used worldwide for dose estimations concerning occupational or public exposures due to radionuclides incorporated into the body and has formed the basis for programs developed by other laboratories to calculate, for example, dose to the patients undergoing nuclear medicine procedures. The revised version of SEECAL is at the moment limited to adults and utilises the photon SAFs derived with Monte Carlo methods for the new reference male and female voxel-based phantoms to be adopted by the ICRP.


Assuntos
Modelos Biológicos , Contagem Corporal Total/métodos , Bioensaio/métodos , Bioensaio/normas , Criança , Simulação por Computador , Feminino , Humanos , Masculino , Especificidade de Órgãos , Doses de Radiação , Eficiência Biológica Relativa , Sensibilidade e Especificidade , Especificidade da Espécie , Distribuição Tecidual
9.
Radiat Prot Dosimetry ; 127(1-4): 187-91, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18192667

RESUMO

The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbed energy over the active marrow within the spongiosa and over the soft tissues within 10 microm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 microm of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose-response functions. This paper outlines the development of such response functions for photons.


Assuntos
Osso e Ossos/fisiologia , Modelos Biológicos , Contagem Corporal Total/métodos , Bioensaio/métodos , Simulação por Computador , Feminino , Humanos , Transferência Linear de Energia/fisiologia , Masculino , Fótons , Doses de Radiação , Eficiência Biológica Relativa , Sensibilidade e Especificidade , Especificidade da Espécie , Distribuição Tecidual
10.
Radiat Prot Dosimetry ; 127(1-4): 169-73, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17556345

RESUMO

In 1995, the International Commission on Radiological Protection (ICRP) issued ICRP Publication 70 which provided an extensive update to the physiological and anatomical reference data for the skeleton of adults and children originally issued in ICRP Publication 23. Although ICRP Publication 70 has been a valuable document in the development of reference voxel computational phantoms, additional guidance is needed for dose assessment in the skeletal tissues beyond that given in ICRP Publication 30. In this study, a computed tomography (CT) and micro-CT-based model of the skeletal tissues is presented, which considers (1) a 50-microm depth in marrow for the osteoprogenitor cells, (2) electron escape from trabecular spongiosa to the surrounding cortical bone, (3) cortical bone to trabecular spongiosa cross-fire for electrons and (4) variations in specific absorbed fraction with changes in bone marrow cellularity for electrons. A representative data set is given for electron dosimetry in the craniofacial bones of the adult male.


Assuntos
Bioensaio/métodos , Ossos Faciais/fisiologia , Modelos Biológicos , Radiometria/métodos , Simulação por Computador , Elétrons , Doses de Radiação , Eficiência Biológica Relativa , Sensibilidade e Especificidade , Especificidade da Espécie , Distribuição Tecidual
11.
Radiat Prot Dosimetry ; 127(1-4): 486-90, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18045798

RESUMO

Several approaches are available for bioassay interpretation when assigning Pu doses to Mayak workers. First, a conventional approach is to apply ICRP models per se. An alternative method involves individualised fitting of bioassay data using Bayesian statistical methods. A third approach is to develop an independent dosimetry system for Mayak workers by adapting ICRP models using a dataset of available bioassay measurements for this population. Thus, a dataset of 42 former Mayak workers, who died of non-radiation effects, with both urine bioassay and post-mortem tissue data was used to test these three approaches. All three approaches proved to be adequate for bioassay and tissue interpretation, and thus for Pu dose reconstruction purposes. However, large discrepancies are observed in the resulting quantitative dose estimates. These discrepancies can, in large part, be explained by differences in the interpretation of Pu behaviour in the lungs in the context of ICRP lung model. Thus, a careful validation of Pu lung dosimetry model is needed in Mayak worker dosimetry systems.


Assuntos
Bioensaio/métodos , Modelos Biológicos , Exposição Ocupacional/análise , Plutônio/análise , Plutônio/farmacocinética , Centrais Elétricas , Contagem Corporal Total/métodos , Carga Corporal (Radioterapia) , Simulação por Computador , Humanos , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , U.R.S.S.
12.
Radiat Prot Dosimetry ; 175(1): 26-30, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27574318

RESUMO

Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior-posterior, posterior-anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10-9 MeV to 10 GeV. At energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.


Assuntos
Nêutrons , Doses de Radiação , Proteção Radiológica , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Radiometria
13.
Radiat Prot Dosimetry ; 174(4): 439-448, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522048

RESUMO

In this article, methods are addressed to reduce the computational time to compute organ-dose rate coefficients using Monte Carlo techniques. Several variance reduction techniques are compared including the reciprocity method, importance sampling, weight windows and the use of the ADVANTG software package. For low-energy photons, the runtime was reduced by a factor of 105 when using the reciprocity method for kerma computation for immersion of a phantom in contaminated water. This is particularly significant since impractically long simulation times are required to achieve reasonable statistical uncertainties in organ dose for low-energy photons in this source medium and geometry. Although the MCNP Monte Carlo code is used in this paper, the reciprocity technique can be used equally well with other Monte Carlo codes.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Simulação por Computador , Fótons , Software , Água
14.
Radiat Prot Dosimetry ; 174(2): 275-286, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27150517

RESUMO

The Oak Ridge National Laboratory Center for Radiation Protection Knowledge (CRPK) has undertaken a number of calculations in support of a revision to the United States Environmental Protection Agency (US EPA) Federal Guidance Report on external exposure to radionuclides in air, water and soil (FGR 12). Age-specific mathematical phantom calculations were performed for the conditions of submersion in radioactive air and immersion in water. Dose rate coefficients were calculated for discrete photon and electron energies and folded with emissions from 1252 radionuclides using ICRP Publication 107 decay data to determine equivalent and effective dose rate coefficients. The coefficients calculated in this work compare favorably to those reported in FGR12 as well as by other authors that employed voxel phantoms for similar exposure scenarios.


Assuntos
Proteção Radiológica , Poluentes Radioativos , Ar , Humanos , Imagens de Fantasmas , Fótons , Doses de Radiação , Monitoramento de Radiação , Radioisótopos , Estados Unidos , Água
15.
Ann ICRP ; 46(3-4): 1-486, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29380630

RESUMO

Abstract ­: The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988) and Publication 68 (ICRP, 1994). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), this current publication and upcoming publications in the OIR series (Parts 4 and 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv Bq−1 intake) for inhalation and ingestion, tables of committed effective dose per content (Sv Bq−1 measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The electronic annex that accompanies the OIR series of publications contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. This third publication in the series provides the above data for the following elements: ruthenium (Ru), antimony (Sb), tellurium (Te), iodine (I), caesium (Cs), barium (Ba), iridium (Ir), lead (Pb), bismuth (Bi), polonium (Po), radon (Rn), radium (Ra), thorium (Th), and uranium (U).


Assuntos
Exposição Ocupacional/prevenção & controle , Saúde Ocupacional/normas , Exposição à Radiação/prevenção & controle , Monitoramento de Radiação/normas , Proteção Radiológica/normas , Radioisótopos/efeitos adversos , Relação Dose-Resposta à Radiação , Humanos , Exposição à Radiação/normas , Radiação Ionizante , Medição de Risco
16.
Radiat Prot Dosimetry ; 121(3): 252-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16603605

RESUMO

Estimates of the dose to the extrathoracic airway (nasal vestibule) from inhaled beta-emitting radionuclides, obtained using the respiratory tract model presented in Publication 66 of the International Commission on Radiological Protection, frequently predict that the basal cells in this region are the most highly irradiated tissues of the body. The dose to the basal cells is averaged over a layer of tissue 10 microm thick located at a depth of 40 microm into the airway assuming that charged particle equilibrium exists. Since the target (basal cell layer) is very small and thin (10 cm(2) area and 10 microm thickness), charged particle equilibrium does not exist. In this work the effect on the absorbed fraction of the lack of charged particle equilibrium is investigated.


Assuntos
Elétrons , Doses de Radiação , Radioisótopos , Sistema Respiratório/efeitos da radiação , Partículas beta , Humanos , Modelos Biológicos , Fótons
17.
Radiat Prot Dosimetry ; 168(2): 167-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25935016

RESUMO

With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above ∼30 MeV the cranial and caudal values are greater.


Assuntos
Núcleo Caudado/efeitos da radiação , Irradiação Craniana , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Fótons , Proteção Radiológica/normas , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Método de Monte Carlo , Doses de Radiação
18.
Radiat Prot Dosimetry ; 172(4): 367-374, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26838066

RESUMO

As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photons in the range of 30 keV to 5 MeV. These calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.


Assuntos
Modelos Teóricos , Neoplasias/radioterapia , Imagens de Fantasmas , Fótons , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Ar , Algoritmos , Carga Corporal (Radioterapia) , Elétrons , Humanos , Masculino , Método de Monte Carlo , Órgãos em Risco , Proteção Radiológica , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
19.
Ann ICRP ; 45(2): 5-73, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-29749258

RESUMO

Abstract ­: Dose coefficients for assessment of internal exposures to radionuclides are radiological protection quantities giving either the organ equivalent dose or effective dose per intake of radionuclide following ingestion or inhalation. In the International Commission on Radiological Protection's (ICRP) Occupational Intakes of Radionuclides (OIR) publication series, new biokinetic models for distribution of internalised radionuclides in the human body are presented as needed for establishing time-integrated activity within organs of deposition (source regions). This series of publications replaces Publications 30 and 68 (ICRP, 1979, 1980, 1981, 1988, 1994b). In addition, other fundamental data needed for computation of the dose coefficients are radionuclide decay data (energies and yields of emitted radiations), which are given in Publication 107 (ICRP, 2008), and specific absorbed fraction (SAF) values ­ defined as the fraction of the particle energy emitted in a source tissue region that is deposited in a target tissue region per mass of target tissue. This publication provides the technical basis for SAFs relevant to internalised radionuclide activity in the organs of Reference Adult Male and Reference Adult Female as defined in Publications 89 and 110 (ICRP, 2002, 2009). SAFs are given for uniform distributions of mono-energetic photons, electrons, alpha particles, and fission-spectrum neutrons over a range of relevant energies. Electron SAFs include both collision and radiative components of energy deposition. SAF data are matched to source and target organs of the biokinetic models of the OIR publication series, as well as the Publication 100 (ICRP, 2006) Human Alimentary Tract Model and the Publication 66 (ICRP, 1994a) Human Respiratory Tract Model, the latter as revised within Publication 130 (ICRP, 2015). This publication further outlines the computational methodology and nomenclature for assessment of internal dose in a manner consistent with that used for nuclear medicine applications. Numerical data for particle-specific and energy-dependent SAFs are given in electronic format for numerical coupling to the respiratory tract, alimentary tract, and systemic biokinetic models of the OIR publication series.

20.
Ann ICRP ; 45(3-4): 7-349, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28657340

RESUMO

Abstract ­: The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988b) and Publication 68 (ICRP, 1994b). In addition, new data are available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. Part 1 of the OIR series has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. The following publications in the OIR series (Parts 2­5) will provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The electronic annex that accompanies the OIR series of reports contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. The present publication provides the above data for the following elements: hydrogen (H), carbon (C), phosphorus (P), sulphur (S), calcium (Ca), iron (Fe), cobalt (Co), zinc (Zn), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), and technetium (Tc).


Assuntos
Exposição Ocupacional/prevenção & controle , Exposição à Radiação/prevenção & controle , Monitoramento de Radiação/normas , Proteção Radiológica/normas , Radioisótopos , Relação Dose-Resposta à Radiação , Humanos , Saúde Ocupacional , Radiação Ionizante , Radiometria , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA