Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Evol Lett ; 8(1): 1-7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370543

RESUMO

When the notion of climate change emerged over 200 years ago, few speculated as to the impact of rising atmospheric temperatures on biological life. Tens of decades later, research clearly demonstrates that the impact of climate change on life on Earth is enormous, ongoing, and with foreseen effects lasting well into the next century. Responses to climate change have been widely documented. However, the breadth of phenotypic traits involved with evolutionary adaptation to climate change remains unclear. In addition, it is difficult to identify the genetic and/or epigenetic bases of phenotypes adaptive to climate change, in part because it often is not clear whether this change is plastic, genetic, or some combination of the two. Adaptive responses to climate-driven selection also interact with other processes driving genetic changes in general, including demography as well as selection driven by other factors. In this Special Issue, we explore the factors that will impact the overall outcome of climate change adaptation. Our contributions explain that traits involved in climate change adaptation include not only classic phenomena, such as range shifts and environmentally dependent sex determination, but also often overlooked phenomena such as social and sexual conflicts and the expression of stress hormones. We learn how climate-driven selection can be mediated via both natural and sexual selection, effectively influencing key fitness-related traits such as offspring growth and fertility as well as evolutionary potential. Finally, we explore the limits and opportunities for predicting adaptive responses to climate change. This contribution forms the basis of 10 actions that we believe will improve predictions of when and how organisms may adapt genetically to climate change. We anticipate that this Special Issue will inform novel investigations into how the effects of climate change unfold from phenotypes to genotypes, particularly as methodologies increasingly allow researchers to study selection in field experiments.

2.
Evol Lett ; 8(1): 172-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370544

RESUMO

Predicting if, when, and how populations can adapt to climate change constitutes one of the greatest challenges in science today. Here, we build from contributions to the special issue on evolutionary adaptation to climate change, a survey of its authors, and recent literature to explore the limits and opportunities for predicting adaptive responses to climate change. We outline what might be predictable now, in the future, and perhaps never even with our best efforts. More accurate predictions are expected for traits characterized by a well-understood mapping between genotypes and phenotypes and traits experiencing strong, direct selection due to climate change. A meta-analysis revealed an overall moderate trait heritability and evolvability in studies performed under future climate conditions but indicated no significant change between current and future climate conditions, suggesting neither more nor less genetic variation for adapting to future climates. Predicting population persistence and evolutionary rescue remains uncertain, especially for the many species without sufficient ecological data. Still, when polled, authors contributing to this special issue were relatively optimistic about our ability to predict future evolutionary responses to climate change. Predictions will improve as we expand efforts to understand diverse organisms, their ecology, and their adaptive potential. Advancements in functional genomic resources, especially their extension to non-model species and the union of evolutionary experiments and "omics," should also enhance predictions. Although predicting evolutionary responses to climate change remains challenging, even small advances will reduce the substantial uncertainties surrounding future evolutionary responses to climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA