Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Oncogene ; 40(21): 3719-3733, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947960

RESUMO

The clinical performance of the therapeutic monoclonal antibody trastuzumab in the treatment of ErbB2-positive unresectable gastric cancer (GC) is severely hampered by the emergence of molecular resistance. Trastuzumab's target epitope is localized within the extracellular domain of the oncogenic cell surface receptor tyrosine kinase (RTK) ErbB2, which is known to undergo extensive N-linked glycosylation. However, the site-specific glycan repertoire of ErbB2, as well as the detailed molecular mechanisms through which specific aberrant glycan signatures functionally impact the malignant features of ErbB2-addicted GC cells, including the acquisition of trastuzumab resistance, remain elusive. Here, we demonstrate that ErbB2 is modified with both α2,6- and α2,3-sialylated glycan structures in GC clinical specimens. In-depth mass spectrometry-based glycomic and glycoproteomic analysis of ErbB2's ectodomain disclosed a site-specific glycosylation profile in GC cells, in which the ST6Gal1 sialyltransferase specifically targets ErbB2 N-glycosylation sites occurring within the receptor's trastuzumab-binding domain. Abrogation of ST6Gal1 expression reshaped the cellular and ErbB2-specific glycomes, expanded the cellular half-life of the ErbB2 receptor, and sensitized ErbB2-dependent GC cells to trastuzumab-induced cytotoxicity through the stabilization of ErbB dimers at the cell membrane, and the decreased activation of both ErbB2 and EGFR RTKs. Overall, our data demonstrates that ST6Gal1-mediated aberrant α2,6-sialylation actively tunes the resistance of ErbB2-driven GC cells to trastuzumab.


Assuntos
Antígenos CD/metabolismo , Glicômica/métodos , Receptor ErbB-2/antagonistas & inibidores , Sialiltransferases/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Trastuzumab/uso terapêutico , Antígenos CD/genética , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Sialiltransferases/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
2.
Nat Commun ; 12(1): 5838, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611164

RESUMO

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate receptor- and tissue-specific sequestration of infected erythrocytes (IEs) in malaria. Antibody responses are a central component of naturally acquired malaria immunity. PfEMP1-specific IgG likely protects by inhibiting IE sequestration and through IgG-Fc Receptor (FcγR) mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to FcγRIIIa is up to 40-fold higher than fucosylated IgG, resulting in enhanced antibody-dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we show that naturally acquired PfEMP1-specific IgG is strongly afucosylated in a stable and exposure-dependent manner, and efficiently induces FcγRIIIa-dependent natural killer (NK) cell degranulation. In contrast, immunization with a subunit PfEMP1 (VAR2CSA) vaccine results in fully fucosylated specific IgG. These results have implications for understanding protective natural- and vaccine-induced immunity to malaria.


Assuntos
Antígenos de Protozoários/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/imunologia , Feminino , Humanos , Imunoglobulina G/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Gravidez , Vacinação
3.
MAbs ; 11(6): 1053-1063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31349756

RESUMO

The Fc-fusion protein atacicept is currently under clinical investigation for its biotherapeutic application in autoimmune diseases owing to its ability to bind the two cytokines B-Lymphocyte Stimulator (BLyS) and A PRoliferation-Inducing Ligand (APRIL). Like typical recombinant IgG-based therapeutics, atacicept is a glycoprotein whose glycosylation-related heterogeneity arises from the glycosylation-site localization, site-specific occupation and structural diversity of the attached glycans. Here, we present a first comprehensive site-specific N- and O-glycosylation characterization of atacicept using mass spectrometry-based workflows. First, N- and O-glycosylation sites and their corresponding glycoforms were identified. Second, a relative quantitation of the N-glycosylation site microheterogeneity was achieved by glycopeptide analysis, which was further supported by analysis of the released N-glycans. We confirmed the presence of one N-glycosylation site, carrying 47 glycoforms covering 34 different compositions, next to two hinge region O-glycosylation sites with core 1-type glycans. The relative O-glycan distribution was analyzed based on the de-N-glycosylated intact protein species. Overall, N- and O-glycosylation were consistent between two individual production batches.


Assuntos
Espectrometria de Massas , Polissacarídeos/análise , Proteínas Recombinantes de Fusão/química , Glicosilação
4.
Sci Rep ; 8(1): 979, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343697

RESUMO

Mass spectrometric glycomics was used as an innovative approach to identify biomarkers in serum and dialysate samples from peritoneal dialysis (PD) patients. PD is a life-saving treatment worldwide applied in more than 100,000 patients suffering from chronic kidney disease. PD treatment uses the peritoneum as a natural membrane to exchange waste products from blood to a glucose-based solution. Daily exposure of the peritoneal membrane to these solutions may cause complications such as peritonitis, fibrosis and inflammation which, in the long term, lead to the failure of the treatment. It has been shown in the last years that protein N-glycosylation is related to inflammatory and fibrotic processes. Here, by using a recently developed MALDI-TOF-MS method with linkage-specific sialic acid derivatisation, we showed that alpha2,6-sialylation, especially in triantennary N-glycans from peritoneal effluents, is associated with critical clinical outcomes in a prospective cohort of 94 PD patients. Moreover, we found an association between the levels of presumably immunoglobulin-G-related glycans as well as galactosylation of diantennary glycans with PD-related complications such as peritonitis and loss of peritoneal mesothelial cell mass. The observed glycomic changes point to changes in protein abundance and protein-specific glycosylation, representing candidate functional biomarkers of PD and associated complications.


Assuntos
Transporte Biológico/fisiologia , Proteínas Sanguíneas/metabolismo , Inflamação/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peritônio/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Soluções para Diálise/metabolismo , Feminino , Fibrose/sangue , Fibrose/metabolismo , Glucose/metabolismo , Glicosilação , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Diálise Peritoneal/métodos , Peritonite/sangue , Peritonite/metabolismo , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA