Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 555(7696): 371-376, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489755

RESUMO

Analysis of molecular aberrations across multiple cancer types, known as pan-cancer analysis, identifies commonalities and differences in key biological processes that are dysregulated in cancer cells from diverse lineages. Pan-cancer analyses have been performed for adult but not paediatric cancers, which commonly occur in developing mesodermic rather than adult epithelial tissues. Here we present a pan-cancer study of somatic alterations, including single nucleotide variants, small insertions or deletions, structural variations, copy number alterations, gene fusions and internal tandem duplications in 1,699 paediatric leukaemias and solid tumours across six histotypes, with whole-genome, whole-exome and transcriptome sequencing data processed under a uniform analytical framework. We report 142 driver genes in paediatric cancers, of which only 45% match those found in adult pan-cancer studies; copy number alterations and structural variants constituted the majority (62%) of events. Eleven genome-wide mutational signatures were identified, including one attributed to ultraviolet-light exposure in eight aneuploid leukaemias. Transcription of the mutant allele was detectable for 34% of protein-coding mutations, and 20% exhibited allele-specific expression. These data provide a comprehensive genomic architecture for paediatric cancers and emphasize the need for paediatric cancer-specific development of precision therapies.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Leucemia/genética , Mutação/genética , Neoplasias/genética , Alelos , Aneuploidia , Criança , Variações do Número de Cópias de DNA , Exoma/genética , Humanos , Mutação/efeitos da radiação , Taxa de Mutação , Oncogenes/genética , Medicina de Precisão/tendências , Raios Ultravioleta/efeitos adversos
2.
Lancet Oncol ; 24(10): 1147-1156, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797633

RESUMO

BACKGROUND: Carriers of cancer predisposing variants are at an increased risk of developing subsequent malignant neoplasms among those who have survived childhood cancer. We aimed to investigate whether cancer predisposing variants contribute to the risk of subsequent malignant neoplasm-related late mortality (5 years or more after diagnosis). METHODS: In this analysis, data were included from two retrospective cohort studies, St Jude Lifetime Cohort (SJLIFE) and the Childhood Cancer Survivor Study (CCSS), with prospective follow-up of patients who were alive for at least 5 years after diagnosis with childhood cancer (ie, long-term childhood cancer survivors) with corresponding germline whole genome or whole exome sequencing data. Cancer predisposing variants affecting 60 genes associated with well-established autosomal-dominant cancer-predisposition syndromes were characterised. Subsequent malignant neoplasms were graded using the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) version 4.03 with modifications. Cause-specific late mortality was based on linkage with the US National Death Index and systematic cohort follow up. Fine-Gray subdistribution hazard models were used to estimate subsequent malignant neoplasm-related late mortality starting from the first biospecimen collection, treating non-subsequent malignant neoplasm-related deaths as a competing risk, adjusting for genetic ancestry, sex, age at diagnosis, and cancer treatment exposures. SJLIFE (NCT00760656) and CCSS (NCT01120353) are registered with ClinicalTrials.gov. FINDINGS: 12 469 (6172 male and 6297 female) participants were included, 4402 from the SJLIFE cohort (median follow-up time since collection of the first biospecimen 7·4 years [IQR 3·1-9·4]) and 8067 from the CCSS cohort (median follow-up time since collection of the first biospecimen 12·6 years [2·2-16·6]). 641 (5·1%) of 12 469 participants carried cancer predisposing variants (294 [6·7%] in the SJLIFE cohort and 347 [4·3%] in the CCSS cohort), which were significantly associated with an increased severity of subsequent malignant neoplasms (CTCAE grade ≥4 vs grade <4: odds ratio 2·15, 95% CI 1·18-4·19, p=0·0085). 263 (2·1%) subsequent malignant neoplasm-related deaths (44 [1·0%] in the SJLIFE cohort; and 219 [2·7%] in the CCSS cohort) and 426 (3·4%) other-cause deaths (103 [2·3%] in SJLIFE; and 323 [4·0%] in CCSS) occurred. Cumulative subsequent malignant neoplasm-related mortality at 10 years after the first biospecimen collection in carriers of cancer predisposing variants was 3·7% (95% CI 1·2-8·5) in SJLIFE and 6·9% (4·1-10·7) in CCSS versus 1·5% (1·0-2·1) in SJLIFE and 2·1% (1·7-2·5) in CCSS in non-carriers. Carrying a cancer predisposing variant was associated with an increased risk of subsequent malignant neoplasm-related mortality (SJLIFE: subdistribution hazard ratio 3·40 [95% CI 1·37-8·43]; p=0·0082; CCSS: 3·58 [2·27-5·63]; p<0·0001). INTERPRETATION: Identifying participants at increased risk of subsequent malignant neoplasms via genetic counselling and clinical genetic testing for cancer predisposing variants and implementing early personalised cancer surveillance and prevention strategies might reduce the substantial subsequent malignant neoplasm-related mortality burden. FUNDING: American Lebanese Syrian Associated Charities and US National Institutes of Health.


Assuntos
Sobreviventes de Câncer , Neoplasias , Criança , Humanos , Masculino , Feminino , Neoplasias/patologia , Estudos Retrospectivos , Seguimentos , Estudos Prospectivos , Fatores de Risco
3.
Bioinformatics ; 38(2): 549-551, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431982

RESUMO

SUMMARY: Small insertions and deletions (indels) in nucleotide sequence may be represented differently between mapping algorithms and variant callers, or in the flanking sequence context. Representational ambiguity is especially profound for complex indels, complicating comparisons between multiple mappings and call sets. Complex indels may additionally suffer from incomplete allele representation, potentially leading to critical misannotation of variant effect. We present indelPost, a Python library that harmonizes these ambiguities for simple and complex indels via realignment and read-based phasing. We demonstrate that indelPost enables accurate analysis of ambiguous data and can derive the correct complex indel alleles from the simple indel predictions provided by standard small variant detectors, with improved performance over a specialized tool for complex indel analysis. AVAILABILITY AND IMPLEMENTATION: indelPost is freely available at: https://github.com/stjude/indelPost. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Análise de Sequência de DNA , Mutação INDEL , Biblioteca Gênica
4.
Genome Res ; 29(9): 1555-1565, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31439692

RESUMO

Variant interpretation in the era of massively parallel sequencing is challenging. Although many resources and guidelines are available to assist with this task, few integrated end-to-end tools exist. Here, we present the Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE), a web- and cloud-based platform for annotation, identification, and classification of variations in known or putative disease genes. Starting from a set of variants in variant call format (VCF), variants are annotated, ranked by putative pathogenicity, and presented for formal classification using a decision-support interface based on published guidelines from the American College of Medical Genetics and Genomics (ACMG). The system can accept files containing millions of variants and handle single-nucleotide variants (SNVs), simple insertions/deletions (indels), multiple-nucleotide variants (MNVs), and complex substitutions. PeCanPIE has been applied to classify variant pathogenicity in cancer predisposition genes in two large-scale investigations involving >4000 pediatric cancer patients and serves as a repository for the expert-reviewed results. PeCanPIE was originally developed for pediatric cancer but can be easily extended for use for nonpediatric cancers and noncancer genetic diseases. Although PeCanPIE's web-based interface was designed to be accessible to non-bioinformaticians, its back-end pipelines may also be run independently on the cloud, facilitating direct integration and broader adoption. PeCanPIE is publicly available and free for research use.


Assuntos
Biologia Computacional/métodos , Mutação em Linhagem Germinativa , Neoplasias/genética , Criança , Computação em Nuvem , Bases de Dados Genéticas , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interface Usuário-Computador
5.
Blood ; 135(1): 41-55, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31697823

RESUMO

To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, in which multiple subclones harbor mutations in the same drug resistance gene, was observed in 6 relapses and confirmed by single-cell sequencing in 1 case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently a 2-step process in which a persistent clone survived initial therapy and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from preexisting resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.


Assuntos
Biomarcadores Tumorais/genética , Metotrexato/uso terapêutico , Mutagênese/efeitos dos fármacos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , 5'-Nucleotidase/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Criança , Análise Mutacional de DNA , Feminino , Seguimentos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prognóstico , Receptores de Glucocorticoides/genética , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética
6.
Bioinformatics ; 36(5): 1382-1390, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593214

RESUMO

MOTIVATION: Reliable identification of expressed somatic insertions/deletions (indels) is an unmet need due to artifacts generated in PCR-based RNA-Seq library preparation and the lack of normal RNA-Seq data, presenting analytical challenges for discovery of somatic indels in tumor transcriptome. RESULTS: We present RNAIndel, a tool for predicting somatic, germline and artifact indels from tumor RNA-Seq data. RNAIndel leverages features derived from indel sequence context and biological effect in a machine-learning framework. Except for tumor samples with microsatellite instability, RNAIndel robustly predicts 88-100% of somatic indels in five diverse test datasets of pediatric and adult cancers, even recovering subclonal (VAF range 0.01-0.15) driver indels missed by targeted deep-sequencing, outperforming the current best-practice for RNA-Seq variant calling which had 57% sensitivity but with 14 times more false positives. AVAILABILITY AND IMPLEMENTATION: RNAIndel is freely available at https://github.com/stjude/RNAIndel. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias/genética , RNA-Seq , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Software , Sequenciamento do Exoma
7.
BMC Cancer ; 21(1): 1233, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789196

RESUMO

BACKGROUND: RNA editing leads to post-transcriptional variation in protein sequences and has important biological implications. We sought to elucidate the landscape of RNA editing events across pediatric cancers. METHODS: Using RNA-Seq data mapped by a pipeline designed to minimize mapping ambiguity, we investigated RNA editing in 711 pediatric cancers from the St. Jude/Washington University Pediatric Cancer Genome Project focusing on coding variants which can potentially increase protein sequence diversity. We combined de novo detection using paired tumor DNA-RNA data with analysis of known RNA editing sites. RESULTS: We identified 722 unique RNA editing sites in coding regions across pediatric cancers, 70% of which were nonsynonymous recoding variants. Nearly all editing sites represented the canonical A-to-I (n = 706) or C-to-U sites (n = 14). RNA editing was enriched in brain tumors compared to other cancers, including editing of glutamate receptors and ion channels involved in neurotransmitter signaling. RNA editing profiles of each pediatric cancer subtype resembled those of the corresponding normal tissue profiled by the Genotype-Tissue Expression (GTEx) project. CONCLUSIONS: In this first comprehensive analysis of RNA editing events in pediatric cancer, we found that the RNA editing profile of each cancer subtype is similar to its normal tissue of origin. Tumor-specific RNA editing events were not identified indicating that successful immunotherapeutic targeting of RNA-edited peptides in pediatric cancer should rely on increased antigen presentation on tumor cells compared to normal but not on tumor-specific RNA editing per se.


Assuntos
Neoplasias/genética , Edição de RNA , Análise de Sequência de RNA/métodos , Neoplasias Encefálicas/genética , Criança , DNA de Neoplasias , Humanos , Imunoterapia , Neoplasias/metabolismo , Neoplasias/terapia , Fases de Leitura Aberta , Especificidade de Órgãos , RNA Neoplásico , Sequenciamento Completo do Genoma
8.
RNA ; 24(8): 1056-1066, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844105

RESUMO

The recent identification of compounds that interact with the spliceosome (sudemycins, spliceostatin A, and meayamycin) indicates that these molecules modulate aberrant splicing via SF3B1 inhibition. Through whole transcriptome sequencing, we have demonstrated that treatment of Rh18 cells with sudemycin leads to exon skipping as the predominant aberrant splicing event. This was also observed following reanalysis of published RNA-seq data sets derived from HeLa cells after spliceostatin A exposure. These results are in contrast to previous reports that indicate that intron retention was the major consequence of SF3B1 inhibition. Analysis of the exon junctions up-regulated by these small molecules indicated that these sequences were absent in annotated human genes, suggesting that aberrant splicing events yielded novel RNA transcripts. Interestingly, the length of preferred downstream exons was significantly longer than the skipped exons, although there was no difference between the lengths of introns flanking skipped exons. The reading frame of the aberrantly skipped exons maintained a ratio of 2:1:1, close to that of the cassette exons (3:1:1) present in naturally occurring isoforms, suggesting negative selection by the nonsense-mediated decay (NMD) machinery for out-of-frame transcripts. Accordingly, genes involved in NMD and RNAs encoding proteins involved in the splicing process were enriched in both data sets. Our findings, therefore, further elucidate the mechanisms by which SF3B1 inhibition modulates pre-mRNA splicing.


Assuntos
Compostos de Epóxi/farmacologia , Éxons/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Biossíntese de Proteínas/genética , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/genética , Splicing de RNA/genética , Compostos de Espiro/farmacologia , Spliceossomos/genética , Sequência de Bases , Linhagem Celular Tumoral , Células HCT116 , Células HeLa , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Fases de Leitura/genética , Análise de Sequência de RNA , Transcriptoma/genética
9.
N Engl J Med ; 373(24): 2336-2346, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580448

RESUMO

BACKGROUND: The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families. METHODS: In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69). We analyzed the DNA sequences of 565 genes, including 60 that have been associated with autosomal dominant cancer-predisposition syndromes, for the presence of germline mutations. The pathogenicity of the mutations was determined by a panel of medical experts with the use of cancer-specific and locus-specific genetic databases, the medical literature, computational predictions, and second hits identified in the tumor genome. The same approach was used to analyze data from 966 persons who did not have known cancer in the 1000 Genomes Project, and a similar approach was used to analyze data from an autism study (from 515 persons with autism and 208 persons without autism). RESULTS: Mutations that were deemed to be pathogenic or probably pathogenic were identified in 95 patients with cancer (8.5%), as compared with 1.1% of the persons in the 1000 Genomes Project and 0.6% of the participants in the autism study. The most commonly mutated genes in the affected patients were TP53 (in 50 patients), APC (in 6), BRCA2 (in 6), NF1 (in 4), PMS2 (in 4), RB1 (in 3), and RUNX1 (in 3). A total of 18 additional patients had protein-truncating mutations in tumor-suppressor genes. Of the 58 patients with a predisposing mutation and available information on family history, 23 (40%) had a family history of cancer. CONCLUSIONS: Germline mutations in cancer-predisposing genes were identified in 8.5% of the children and adolescents with cancer. Family history did not predict the presence of an underlying predisposition syndrome in most patients. (Funded by the American Lebanese Syrian Associated Charities and the National Cancer Institute.).


Assuntos
Genes Neoplásicos , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias/genética , Adolescente , Transtorno Autístico/genética , Criança , Feminino , Genes Dominantes , Genoma Humano , Humanos , Masculino , Programa de SEER , Análise de Sequência de DNA/métodos , Adulto Jovem
12.
Nat Commun ; 14(1): 6008, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770423

RESUMO

Fusion oncoproteins (FOs) arise from chromosomal translocations in ~17% of cancers and are often oncogenic drivers. Although some FOs can promote oncogenesis by undergoing liquid-liquid phase separation (LLPS) to form aberrant biomolecular condensates, the generality of this phenomenon is unknown. We explored this question by testing 166 FOs in HeLa cells and found that 58% formed condensates. The condensate-forming FOs displayed physicochemical features distinct from those of condensate-negative FOs and segregated into distinct feature-based groups that aligned with their sub-cellular localization and biological function. Using Machine Learning, we developed a predictor of FO condensation behavior, and discovered that 67% of ~3000 additional FOs likely form condensates, with 35% of those predicted to function by altering gene expression. 47% of the predicted condensate-negative FOs were associated with cell signaling functions, suggesting a functional dichotomy between condensate-positive and -negative FOs. Our Datasets and reagents are rich resources to interrogate FO condensation in the future.


Assuntos
Condensados Biomoleculares , Proteínas de Fusão Oncogênica , Humanos , Células HeLa , Carcinogênese , Transformação Celular Neoplásica
13.
Bioinformatics ; 27(6): 865-6, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21278191

RESUMO

SUMMARY: Bambino is a variant detector and graphical alignment viewer for next-generation sequencing data in the SAM/BAM format, which is capable of pooling data from multiple source files. The variant detector takes advantage of SAM-specific annotations, and produces detailed output suitable for genotyping and identification of somatic mutations. The assembly viewer can display reads in the context of either a user-provided or automatically generated reference sequence, retrieve genome annotation features from a UCSC genome annotation database, display histograms of non-reference allele frequencies, and predict protein-coding changes caused by SNPs. AVAILABILITY: Bambino is written in platform-independent Java and available from https://cgwb.nci.nih.gov/goldenPath/bamview/documentation/index.html, along with documentation and example data. Bambino may be launched online via Java Web Start or downloaded and run locally.


Assuntos
Gráficos por Computador , Análise Mutacional de DNA/métodos , Alinhamento de Sequência/métodos , Software , Biologia Computacional/métodos , Frequência do Gene , Genômica/métodos , Genótipo , Internet , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
14.
Cancer Cell ; 39(1): 83-95.e4, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33434514

RESUMO

GenomePaint (https://genomepaint.stjude.cloud/) is an interactive visualization platform for whole-genome, whole-exome, transcriptome, and epigenomic data of tumor samples. Its design captures the inter-relatedness between DNA variations and RNA expression, supporting in-depth exploration of both individual cancer genomes and full cohorts. Regulatory non-coding variants can be inspected and analyzed along with coding variants, and their functional impact further explored by examining 3D genome data from cancer cell lines. Further, GenomePaint correlates mutation and expression patterns with patient outcomes, and supports custom data upload. We used GenomePaint to unveil aberrant splicing that disrupts the RING domain of CREBBP, discover cis activation of the MYC oncogene by duplication of the NOTCH1-MYC enhancer in B-lineage acute lymphoblastic leukemia, and explore the inter- and intra-tumor heterogeneity at EGFR in adult glioblastomas. These examples demonstrate that deep multi-omics exploration of individual cancer genomes enabled by GenomePaint can lead to biological insights for follow-up validation.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Variação Genética , Neoplasias/genética , Adulto , Linhagem Celular Tumoral , Criança , Bases de Dados Genéticas , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Interface Usuário-Computador , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
15.
Cancer Discov ; 11(5): 1082-1099, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33408242

RESUMO

Effective data sharing is key to accelerating research to improve diagnostic precision, treatment efficacy, and long-term survival in pediatric cancer and other childhood catastrophic diseases. We present St. Jude Cloud (https://www.stjude.cloud), a cloud-based data-sharing ecosystem for accessing, analyzing, and visualizing genomic data from >10,000 pediatric patients with cancer and long-term survivors, and >800 pediatric sickle cell patients. Harmonized genomic data totaling 1.25 petabytes are freely available, including 12,104 whole genomes, 7,697 whole exomes, and 2,202 transcriptomes. The resource is expanding rapidly, with regular data uploads from St. Jude's prospective clinical genomics programs. Three interconnected apps within the ecosystem-Genomics Platform, Pediatric Cancer Knowledgebase, and Visualization Community-enable simultaneously performing advanced data analysis in the cloud and enhancing the Pediatric Cancer knowledgebase. We demonstrate the value of the ecosystem through use cases that classify 135 pediatric cancer subtypes by gene expression profiling and map mutational signatures across 35 pediatric cancer subtypes. SIGNIFICANCE: To advance research and treatment of pediatric cancer, we developed St. Jude Cloud, a data-sharing ecosystem for accessing >1.2 petabytes of raw genomic data from >10,000 pediatric patients and survivors, innovative analysis workflows, integrative multiomics visualizations, and a knowledgebase of published data contributed by the global pediatric cancer community.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Anemia Falciforme/genética , Computação em Nuvem , Genômica , Disseminação de Informação , Neoplasias/genética , Criança , Ecossistema , Hospitais Pediátricos , Humanos
16.
Cancer Discov ; 11(12): 3008-3027, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301788

RESUMO

Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer-predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors), and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor-normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers. SIGNIFICANCE: Pediatric cancers are driven by diverse genomic lesions, and sequencing has proven useful in evaluating high-risk and relapsed/refractory cases. We show that combined WGS, WES, and RNA-seq of tumor and paired normal tissues enables identification and characterization of genetic drivers across the full spectrum of pediatric cancers. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Neoplasias , Criança , DNA , Humanos , Mutação , Neoplasias/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
17.
Clin Cancer Res ; 26(10): 2362-2371, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31969337

RESUMO

PURPOSE: We aimed to analyze and compare leukocyte telomere length (LTL) and age-dependent LTL attrition between childhood cancer survivors and noncancer controls, and to evaluate the associations of LTL with treatment exposures, chronic health conditions (CHC), and health behaviors among survivors. EXPERIMENTAL DESIGN: We included 2,427 survivors and 293 noncancer controls of European ancestry, drawn from the participants in St. Jude Lifetime Cohort Study (SJLIFE), a retrospective hospital-based study with prospective follow-up (2007-2016). Common nonneoplastic CHCs (59 types) and subsequent malignant neoplasms (5 types) were clinically assessed. LTL was measured with whole-genome sequencing data. RESULTS: After adjusting for age at DNA sampling, gender, genetic risk score based on 9 SNPs known to be associated with telomere length, and eigenvectors, LTL among survivors was significantly shorter both overall [adjusted mean (AM) = 6.20 kb; SE = 0.03 kb] and across diagnoses than controls (AM = 6.69 kb; SE = 0.07 kb). Among survivors, specific treatment exposures associated with shorter LTL included chest or abdominal irradiation, glucocorticoid, and vincristine chemotherapies. Significant negative associations of LTL with 14 different CHCs, and a positive association with subsequent thyroid cancer occurring out of irradiation field were identified. Health behaviors were significantly associated with LTL among survivors aged 18 to 35 years (P trend = 0.03). CONCLUSIONS: LTL is significantly shorter among childhood cancer survivors than noncancer controls, and is associated with CHCs and health behaviors, suggesting LTL as an aging biomarker may be a potential mechanistic target for future intervention studies designed to prevent or delay onset of CHCs in childhood cancer survivors.See related commentary by Walsh, p. 2281.


Assuntos
Sobreviventes de Câncer , Neoplasias , Adolescente , Adulto , Criança , Estudos de Coortes , Humanos , Leucócitos , Neoplasias/epidemiologia , Neoplasias/genética , Prevalência , Estudos Prospectivos , Estudos Retrospectivos , Sobreviventes , Telômero/genética , Adulto Jovem
18.
Nat Genet ; 52(8): 811-818, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632335

RESUMO

We developed cis-X, a computational method for discovering regulatory noncoding variants in cancer by integrating whole-genome and transcriptome sequencing data from a single cancer sample. cis-X first finds aberrantly cis-activated genes that exhibit allele-specific expression accompanied by an elevated outlier expression. It then searches for causal noncoding variants that may introduce aberrant transcription factor binding motifs or enhancer hijacking by structural variations. Analysis of 13 T-lineage acute lymphoblastic leukemias identified a recurrent intronic variant predicted to cis-activate the TAL1 oncogene, a finding validated in vivo by chromatin immunoprecipitation sequencing of a patient-derived xenograft. Candidate oncogenes include the prolactin receptor PRLR activated by a focal deletion that removes a CTCF-insulated neighborhood boundary. cis-X may be applied to pediatric and adult solid tumors that are aneuploid and heterogeneous. In contrast to existing approaches, which require large sample cohorts, cis-X enables the discovery of regulatory noncoding variants in individual cancer genomes.


Assuntos
Elementos Facilitadores Genéticos/genética , Variação Genética/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA não Traduzido/genética , Adolescente , Alelos , Criança , Pré-Escolar , Cromatina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Oncogenes/genética , Transcrição Gênica/genética
19.
J Clin Oncol ; 38(24): 2728-2740, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32496904

RESUMO

PURPOSE: To investigate cancer treatment plus pathogenic germline mutations (PGMs) in DNA repair genes (DRGs) for identification of childhood cancer survivors at increased risk of subsequent neoplasms (SNs). METHODS: Whole-genome sequencing was performed on blood-derived DNA from survivors in the St Jude Lifetime Cohort. PGMs were evaluated in 127 genes from 6 major DNA repair pathways. Cumulative doses of chemotherapy and body region-specific radiotherapy (RT) were abstracted from medical records. Relative rates (RRs) and 95% CIs of SNs by mutation status were estimated using multivariable piecewise exponential models. RESULTS: Of 4,402 survivors, 495 (11.2%) developed 1,269 SNs. We identified 538 PGMs in 98 DRGs (POLG, MUTYH, ERCC2, and BRCA2, among others) in 508 (11.5%) survivors. Mutations in homologous recombination (HR) genes were significantly associated with an increased rate of subsequent female breast cancer (RR, 3.7; 95% CI, 1.8 to 7.7), especially among survivors with chest RT ≥ 20 Gy (RR, 4.4; 95% CI, 1.6 to 12.4), or with a cumulative dose of anthracyclines in the second or third tertile (RR, 4.4; 95% CI, 1.7 to 11.4). Mutations in HR genes were also associated with an increased rate of subsequent sarcoma among those who received alkylating agent doses in the third tertile (RR, 14.9; 95% CI, 4.0 to 38.0). Mutations in nucleotide excision repair genes were associated with subsequent thyroid cancer for those treated with neck RT ≥ 30 Gy (RR, 12.9; 95% CI, 1.6 to 46.6) with marginal statistical significance. CONCLUSION: Our study provides novel insights regarding the contribution of genetics, in combination with known treatment-related risks, for the development of SNs. These findings have the potential to facilitate identification of high-risk survivors who may benefit from genetic counseling and/or testing of DRGs, which may further inform personalized cancer surveillance and prevention strategies.


Assuntos
Sequenciamento do Exoma/métodos , Mutação em Linhagem Germinativa/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Adulto , Sobreviventes de Câncer , Criança , Pré-Escolar , Estudos de Coortes , Reparo do DNA , Feminino , Humanos , Masculino , Neoplasias/mortalidade , Estudos Retrospectivos , Sobreviventes , Adulto Jovem
20.
Genome Biol ; 21(1): 126, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466770

RESUMO

To discover driver fusions beyond canonical exon-to-exon chimeric transcripts, we develop CICERO, a local assembly-based algorithm that integrates RNA-seq read support with extensive annotation for candidate ranking. CICERO outperforms commonly used methods, achieving a 95% detection rate for 184 independently validated driver fusions including internal tandem duplications and other non-canonical events in 170 pediatric cancer transcriptomes. Re-analysis of TCGA glioblastoma RNA-seq unveils previously unreported kinase fusions (KLHL7-BRAF) and a 13% prevalence of EGFR C-terminal truncation. Accessible via standard or cloud-based implementation, CICERO enhances driver fusion detection for research and precision oncology. The CICERO source code is available at https://github.com/stjude/Cicero.


Assuntos
Fusão Gênica , Anotação de Sequência Molecular/métodos , Neoplasias/genética , Software , Algoritmos , Humanos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA