Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38189150

RESUMO

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Fibrilação Atrial/genética , Redes Reguladoras de Genes , Cálcio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Átrios do Coração , Insuficiência Cardíaca/genética , Genômica , Fator de Transcrição GATA4/genética
2.
Nature ; 626(8001): 961-962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383638
3.
Europace ; 26(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227822

RESUMO

State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Optogenética , Humanos , Técnicas Eletrofisiológicas Cardíacas/métodos , Optogenética/métodos , Eletrofisiologia Cardíaca/métodos , Coração , Arritmias Cardíacas/terapia
4.
Artigo em Inglês | MEDLINE | ID: mdl-39088698

RESUMO

ABSTRACT: Our present understanding of electrocution followed a long path of detours and speculation. It is now hard to appreciate how mysterious was an unexpected sudden death-without visible trauma-and we should be sympathetic to the surprising theories that came from well-intentioned attempts to find something in the autopsy of an electrocution victim.The early hypotheses (1880s) tended to favor effects on the central nervous system, but the emphasis switched to arterial and hematological mechanisms as well as respiratory arrest (ie, asphyxia) along with a widespread publication debate. While careful animal experimentation slowly established that electrocution was due to the induction of VF (ventricular fibrillation), the older hypotheses held sway for many decades. Even today, the neurogenic and asphyxial explanations reappear occasionally.Despite 170 years of research, the phenomenon of electrocution continues to generate new hypotheses for its mechanism.

5.
J Mol Cell Cardiol ; 181: 67-78, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285929

RESUMO

Diastolic Ca2+ leak due to cardiac ryanodine receptor (RyR2) hyperactivity has been widely documented in chronic ischemic heart disease (CIHD) and may contribute to ventricular tachycardia (VT) risk and progressive left-ventricular (LV) remodeling. Here we test the hypothesis that targeting RyR2 hyperactivity can suppress VT inducibility and progressive heart failure in CIHD by the RyR2 inhibitor dantrolene. METHODS AND RESULTS: CIHD was induced in C57BL/6 J mice by left coronary artery ligation. Four weeks later, mice were randomized to either acute or chronic (6 weeks via implanted osmotic pump) treatment with dantrolene or vehicle. VT inducibility was assessed by programmed stimulation in vivo and in isolated hearts. Electrical substrate remodeling was assessed by optical mapping. Ca2+ sparks and spontaneous Ca2+ releases were measured in isolated cardiomyocytes. Cardiac remodeling was quantified by histology and qRT-PCR. Cardiac function and contractility were measured using echocardiography. Compared to vehicle, acute dantrolene treatment reduced VT inducibility. Optical mapping demonstrated reentrant VT prevention by dantrolene, which normalized the shortened refractory period (VERP) and prolonged action potential duration (APD), preventing APD alternans. In single CIHD cardiomyocytes, dantrolene normalized RyR2 hyperactivity and prevented spontaneous intracellular Ca2+ release. Chronic dantrolene treatment not only reduced VT inducibility but also reduced peri-infarct fibrosis and prevented further progression of LV dysfunction in CIHD mice. CONCLUSIONS: RyR2 hyperactivity plays a mechanistic role for VT risk, post-infarct remodeling, and contractile dysfunction in CIHD mice. Our data provide proof of concept for the anti-arrhythmic and anti-remodeling efficacy of dantrolene in CIHD.


Assuntos
Isquemia Miocárdica , Taquicardia Ventricular , Animais , Camundongos , Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Dantroleno/farmacologia , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/complicações , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/etiologia
6.
Am J Physiol Heart Circ Physiol ; 325(5): H983-H997, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624097

RESUMO

Severe cardiotoxic effects limit the efficacy of doxorubicin (DOX) as a chemotherapeutic agent. Activation of intracellular stress signaling networks, including p38 mitogen-activated protein kinase (MAPK), has been implicated in DOX-induced cardiotoxicity (DIC). However, the roles of the individual p38 isoforms in DIC remain incompletely elucidated. We recently reported that global p38δ deletion protected female but not male mice from DIC, whereas global p38γ deletion did not significantly modulate it. Here we studied the in vivo roles of p38α and p38ß in acute DIC. Male and female mice with cardiomyocyte-specific deletion of p38α or global deletion of p38ß and their wild-type counterparts were injected with DOX. Survival and health were tracked for 10 days postinjection. Cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picrosirius red staining. Expression and activation of signaling proteins and inflammatory markers were measured by Western blot, phosphorylation array, and chemokine/cytokine array. Global p38ß deletion significantly aggravated DIC and worsened cardiac electrical and mechanical function deterioration in female mice. Mechanistically, DIC in p38ß-null female mice correlated with increased autophagy, sustained hyperactivation of proapoptotic JNK signaling, as well as remodeling of a myocardial inflammatory environment. In contrast, cardiomyocyte-specific deletion of p38α improved survival of DOX30-treated male mice 5 days posttreatment but did not influence cardiac function in DOX-treated male or female mice. Our data highlight the sex- and isoform-specific roles of p38α and p38ß MAPKs in DOX-induced cardiac injury and suggest a novel in vivo function of p38ß in protecting female mice from DIC.NEW & NOTEWORTHY We show that p38α and p38ß have distinct in vivo functions in a murine model of acute DIC. Specifically, although conditional cardiomyocyte-specific p38α deletion exhibited mild cardioprotective effects in male mice, p38ß deletion exacerbated the DOX cardiotoxicity in female mice. Our findings caution against employing pyridinyl imidazole inhibitors that target both p38α and p38ß isoforms as a cardioprotective strategy against DIC. Such an approach could have undesirable sex-dependent effects, including attenuating p38ß-dependent cardioprotection in females.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Masculino , Feminino , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/metabolismo , Antraciclinas , Antibióticos Antineoplásicos , Transdução de Sinais , Doxorrubicina/toxicidade , Camundongos Knockout , Apoptose , Estresse Oxidativo
7.
Am J Physiol Heart Circ Physiol ; 325(4): H720-H728, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566110

RESUMO

Ryanodine receptor 2 (RyR2) hyperactivity is observed in structural heart diseases that are a result of ischemia or heart failure. It causes abnormal calcium handling and calcium leaks that cause metabolic, electrical, and mechanical dysfunction, which can trigger arrhythmias. Here, we tested the antiarrhythmic potential of dantrolene (RyR inhibitor) in human hearts. Human hearts not used in transplantation were obtained, and right ventricular outflow tract (RVOT) wedges and left ventricular (LV) slices were prepared. Pseudo-ECGs were recorded to determine premature ventricular contraction (PVC) incidences. Optical mapping was performed to determine arrhythmogenic substrates. After baseline optical recordings, tissues were treated with 1) isoproterenol (250 nM), 2) caffeine (200 mM), and 3) dantrolene (2 or 10 mM). Optical recordings were obtained after each treatment. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Isoproterenol shortened action potential duration (APD) in the RV, RVOT, and LV regions and shortened calcium transient duration (CaTD) in the LV. Caffeine further shortened APD in the RV, did not modulate APD in the RVOT, and prolonged APD in the LV. In addition, in the LV, CaTD prolongation was also observed. More importantly, adding dantrolene did not alter APD in the RV or RVOT regions but produced a trend toward APD prolongation and significant CaTD prolongation in the LV, restoring these parameters to baseline values. In conclusions, dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates in the human heart and could be a novel antiarrhythmic therapy in patients with structural heart disease.NEW & NOTEWORTHY Ryanodine receptor 2 hyperactivity is observed in structural heart diseases caused by ischemia or heart failure. It causes abnormal calcium leaks, which can trigger arrhythmias. To prevent arrhythmias, we applied dantrolene in human hearts ex vivo. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates and could be a novel antiarrhythmic therapy in patients with structural heart disease.


Assuntos
Insuficiência Cardíaca , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Dantroleno/farmacologia , Isoproterenol/farmacologia , Rianodina/farmacologia , Cálcio/metabolismo , Cafeína/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Antiarrítmicos/farmacologia , Potenciais de Ação
8.
Small ; 19(49): e2305017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528504

RESUMO

Eco/bioresorbable electronics represent an emerging class of technology defined by an ability to dissolve or otherwise harmlessly disappear in environmental or biological surroundings after a period of stable operation. The resulting devices provide unique capabilities as temporary biomedical implants, environmental sensors, and related systems. Recent publications report schemes to overcome challenges in fabrication that follow from the low thermostability and/or high chemical reactivity of the eco/bioresorbable constituent materials. Here, this work reports the use of high-speed sewing machines, as the basis for a high-throughput manufacturing technique that addresses many requirements for these applications, without the need for high temperatures or reactive solvents. Results demonstrate that a range of eco/bioresorbable metal wires and polymer threads can be embroidered into complex, user-defined conductive patterns on eco/bioresorbable substrates. Functional electronic components, such as stretchable interconnects and antennas are possible, along with fully integrated systems. Examples of the latter include wirelessly powered light-emitting diodes, radiofrequency identification tags, and temporary cardiac pacemakers. These advances add to a growing range of options in high-throughput, automated fabrication of eco/bioresorbable electronics.


Assuntos
Implantes Absorvíveis , Eletrônica , Metais , Polímeros , Solventes
9.
Circ Res ; 128(5): e84-e101, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508947

RESUMO

RATIONALE: Mitral valve prolapse (MVP) is a common valvopathy that leads to mitral insufficiency, heart failure, and sudden death. Functional genomic studies in mitral valves are needed to better characterize MVP-associated variants and target genes. OBJECTIVE: To establish the chromatin accessibility profiles and assess functionality of variants and narrow down target genes at MVP loci. METHODS AND RESULTS: We mapped the open chromatin regions in nuclei from 11 human pathogenic and 7 nonpathogenic mitral valves by an assay for transposase-accessible chromatin with high-throughput sequencing. Open chromatin peaks were globally similar between pathogenic and nonpathogenic valves. Compared with the heart tissue and cardiac fibroblasts, we found that MV-specific assay for transposase-accessible chromatin with high-throughput sequencing peaks are enriched near genes involved in extracellular matrix organization, chondrocyte differentiation, and connective tissue development. One of the most enriched motifs in MV-specific open chromatin peaks was for the nuclear factor of activated T cells family of TFs (transcription factors) involved in valve endocardial and interstitial cell formation. We also found that MVP-associated variants were significantly enriched (P<0.05) in mitral valve open chromatin peaks. Integration of the assay for transposase-accessible chromatin with high-throughput sequencing data with risk loci, extensive functional annotation, and gene reporter assay suggest plausible causal variants for rs2641440 at the SMG6/SRR locus and rs6723013 at the IGFBP2/IGFBP5/TNS1 locus. CRISPR-Cas9 deletion of the sequence including rs6723013 in human fibroblasts correlated with increased expression only for TNS1. Circular chromatin conformation capture followed by high-throughput sequencing experiments provided evidence for several target genes, including SRR, HIC1, and DPH1 at the SMG6/SRR locus and further supported TNS1 as the most likely target gene on chromosome 2. CONCLUSIONS: Here, we describe unprecedented genome-wide open chromatin profiles from human pathogenic and nonpathogenic MVs and report specific gene regulation profiles, compared with the heart. We also report in vitro functional evidence for potential causal variants and target genes at MVP risk loci involving established and new biological mechanisms. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Cromatina/genética , Prolapso da Valva Mitral/genética , Valva Mitral/metabolismo , Polimorfismo de Nucleotídeo Único , Células Cultivadas , Cromatina/metabolismo , Fibroblastos/metabolismo , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Prolapso da Valva Mitral/metabolismo , Telomerase/genética , Tensinas/genética , Transcriptoma
10.
Physiol Genomics ; 54(1): 22-35, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766515

RESUMO

Broad cellular functions and diseases including muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy (ARVC5) and cancer are associated with transmembrane protein43 (TMEM43/LUMA). The study aimed to investigate biological roles of TMEM43 through genetic regulation, gene pathways and gene networks, candidate interacting genes, and up- or downstream regulators. Cardiac transcriptomes from 40 strains of recombinant inbred BXD mice and two parental strains representing murine genetic reference population (GRP) were applied for genetic correlation, functional enrichment, and coexpression network analysis using systems genetics approach. The results were validated in a newly created knock-in Tmem43-S358L mutation mouse model (Tmem43S358L) that displayed signs of cardiac dysfunction, resembling ARVC5 phenotype seen in humans. We found high Tmem43 levels among BXDs with broad variability in expression. Expression of Tmem43 highly negatively correlated with heart mass and heart rate among BXDs, whereas levels of Tmem43 highly positively correlated with plasma high-density lipoproteins (HDL). Through finding differentially expressed genes (DEGs) between Tmem43S358L mutant and wild-type (Tmem43WT) lines, 18 pathways (out of 42 found in BXDs GRP) that are involved in ARVC, hypertrophic cardiomyopathy, dilated cardiomyopathy, nonalcoholic fatty liver disease, Alzheimer's disease, Parkinson's disease, and Huntington's disease were verified. We further constructed Tmem43-mediated gene network, in which Ctnna1, Adcy6, Gnas, Ndufs6, and Uqcrc2 were significantly altered in Tmem43S358L mice versus Tmem43WT controls. Our study defined the importance of Tmem43 for cardiac- and metabolism-related pathways, suggesting that cardiovascular disease-relevant risk factors may also increase risk of metabolic and neurodegenerative diseases via TMEM43-mediated pathways.


Assuntos
Displasia Arritmogênica Ventricular Direita , Proteínas de Membrana , Animais , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética , Coração , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação/genética , Fenótipo
11.
Small ; 18(36): e2107099, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36073141

RESUMO

The need to develop wearable devices for personal health monitoring, diagnostics, and therapy has inspired the production of innovative on-demand, customizable technologies. Several of these technologies enable printing of raw electronic materials directly onto biological organs and tissues. However, few of them have been thoroughly investigated for biocompatibility of the raw materials on the cellular, tissue, and organ levels or with different cell types. In addition, highly accurate multiday in vivo monitoring using such on-demand, in situ fabricated devices has yet to be done. Presented herein is the first fully biocompatible, on-skin fabricated electronics for multiple cell types and tissues that can capture electrophysiological signals with high fidelity. While also demonstrating improved mechanical and electrical properties, the drawn-on-skin ink retains its properties under various writing conditions, which minimizes the variation in electrical performance. Furthermore, the drawn-on-skin ink shows excellent biocompatibility with cardiomyocytes, neurons, mice skin tissue, and human skin. The high signal-to-noise ratios of the electrophysiological signals recorded with the DoS sensor over multiple days demonstrate its potential for personalized, long-term, and accurate electrophysiological health monitoring.


Assuntos
Tinta , Dispositivos Eletrônicos Vestíveis , Animais , Eletrônica , Eletrofisiologia , Humanos , Camundongos , Pele
12.
Nat Mater ; 20(11): 1559-1570, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34326506

RESUMO

Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices. These materials strongly bond both to the surfaces of the devices and to those of different internal organs, with stable adhesion for several days to months, in chemistries that can be tailored to bioresorb at controlled rates. Experimental demonstrations in live animal models include device applications that range from battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy to wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays. These advances have immediate applicability across nearly all types of bioelectronic/optoelectronic system currently used in animal model studies, and they also have the potential for future treatment of life-threatening diseases and disorders in humans.


Assuntos
Implantes Absorvíveis , Adesivos , Animais , Condutividade Elétrica , Eletrônica
13.
Circ Res ; 127(3): e94-e106, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32290757

RESUMO

RATIONALE: The heartbeat is organized by the cardiac conduction system (CCS), a specialized network of cardiomyocytes. Patterning of the CCS into atrial node versus ventricular conduction system (VCS) components with distinct physiology is essential for the normal heartbeat. Distinct node versus VCS physiology has been recognized for more than a century, but the molecular basis of this regional patterning is not well understood. OBJECTIVE: To study the genetic and genomic mechanisms underlying node versus VCS distinction and investigate rhythm consequences of failed VCS patterning. METHODS AND RESULTS: Using mouse genetics, we found that the balance between T-box transcriptional activator, Tbx5, and T-box transcriptional repressor, Tbx3, determined the molecular and functional output of VCS myocytes. Adult VCS-specific removal of Tbx5 or overexpression of Tbx3 re-patterned the fast VCS into slow, nodal-like cells based on molecular and functional criteria. In these cases, gene expression profiling showed diminished expression of genes required for VCS-specific fast conduction but maintenance of expression of genes required for nodal slow conduction physiology. Action potentials of Tbx5-deficient VCS myocytes adopted nodal-specific characteristics, including increased action potential duration and cellular automaticity. Removal of Tbx5 in vivo precipitated inappropriate depolarizations in the atrioventricular (His)-bundle associated with lethal ventricular arrhythmias. TBX5 bound and directly activated cis-regulatory elements at fast conduction channel genes required for fast physiological characteristics of the VCS action potential, defining the identity of the adult VCS. CONCLUSIONS: The CCS is patterned entirely as a slow, nodal ground state, with a T-box dependent, physiologically dominant, fast conduction network driven specifically in the VCS. Disruption of the fast VCS gene regulatory network allowed nodal physiology to emerge, providing a plausible molecular mechanism for some lethal ventricular arrhythmias.


Assuntos
Arritmias Cardíacas/metabolismo , Nó Atrioventricular/metabolismo , Ventrículos do Coração/metabolismo , Proteínas com Domínio T/metabolismo , Transcrição Gênica , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Nó Atrioventricular/fisiopatologia , Padronização Corporal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos Knockout , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Fatores de Tempo
14.
Circ Res ; 127(2): e28-e43, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32347164

RESUMO

RATIONALE: ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE: We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS: Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS: ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.


Assuntos
Nó Atrioventricular/metabolismo , Frequência Cardíaca , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Nó Atrioventricular/fisiologia , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína alfa-5 de Junções Comunicantes
15.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769252

RESUMO

Involvement of the Toll-like receptor 4 (TLR4) in maladaptive cardiac remodeling and heart failure (HF) upon pressure overload has been studied extensively, but less is known about the role of TLR2. Interplay and redundancy of TLR4 with TLR2 have been reported in other organs but were not investigated during cardiac dysfunction. We explored whether TLR2 deficiency leads to less adverse cardiac remodeling upon chronic pressure overload and whether TLR2 and TLR4 additively contribute to this. We subjected 35 male C57BL/6J mice (wildtype (WT) or TLR2 knockout (KO)) to sham or transverse aortic constriction (TAC) surgery. After 12 weeks, echocardiography and electrocardiography were performed, and hearts were extracted for molecular and histological analysis. TLR2 deficiency (n = 14) was confirmed in all KO mice by PCR and resulted in less hypertrophy (heart weight to tibia length ratio (HW/TL), smaller cross-sectional cardiomyocyte area and decreased brain natriuretic peptide (BNP) mRNA expression, p < 0.05), increased contractility (QRS and QTc, p < 0.05), and less inflammation (e.g., interleukins 6 and 1ß, p < 0.05) after TAC compared to WT animals (n = 11). Even though TLR2 KO TAC animals presented with lower levels of ventricular TLR4 mRNA than WT TAC animals (13.2 ± 0.8 vs. 16.6 ± 0.7 mg/mm, p < 0.01), TLR4 mRNA expression was increased in animals with the largest ventricular mass, highest hypertrophy, and lowest ejection fraction, leading to two distinct groups of TLR2 KO TAC animals with variations in cardiac remodeling. This variation, however, was not seen in WT TAC animals even though heart weight/tibia length correlated with expression of TLR4 in these animals (r = 0.078, p = 0.005). Our data suggest that TLR2 deficiency ameliorates adverse cardiac remodeling and that ventricular TLR2 and TLR4 additively contribute to adverse cardiac remodeling during chronic pressure overload. Therefore, both TLRs may be therapeutic targets to prevent or interfere in the underlying molecular processes.


Assuntos
Pressão Sanguínea , Cardiomegalia/metabolismo , Ventrículos do Coração/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Remodelação Ventricular , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
16.
Am J Physiol Heart Circ Physiol ; 319(4): H775-H786, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32822209

RESUMO

The efficacy of an anthracycline antibiotic doxorubicin (DOX) as a chemotherapeutic agent is limited by dose-dependent cardiotoxicity. DOX is associated with activation of intracellular stress signaling pathways including p38 MAPKs. While previous studies have implicated p38 MAPK signaling in DOX-induced cardiac injury, the roles of the individual p38 isoforms, specifically, of the alternative isoforms p38γ and p38δ, remain uncharacterized. We aimed to determine the potential cardioprotective effects of p38γ and p38δ genetic deletion in mice subjected to acute DOX treatment. Male and female wild-type (WT), p38γ-/-, p38δ-/-, and p38γ-/-δ-/- mice were injected with 30 mg/kg DOX and their survival was tracked for 10 days. During this period, cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picro Sirius Red staining. Immunoblotting was performed to assess the expression of signaling proteins and markers linked to autophagy. Significantly improved survival was observed in p38δ-/- female mice post-DOX relative to WT females, but not in p38γ-/- or p38γ-/-δ-/- male or female mice. The improved survival in DOX-treated p38δ-/- females was associated with decreased fibrosis, increased cardiac output and LV diameter relative to DOX-treated WT females, and similar to saline-treated controls. Structural and echocardiographic parameters were either unchanged or worsened in all other groups. Increased autophagy, as suggested by increased LC3-II level, and decreased mammalian target of rapamycin activation was also observed in DOX-treated p38δ-/- females. p38δ plays a crucial role in promoting DOX-induced cardiotoxicity in female mice by inhibiting autophagy. Therefore, p38δ targeting could be a potential cardioprotective strategy in anthracycline chemotherapy.NEW & NOTEWORTHY This study for the first time identifies the sex-specific roles of the alternative p38γ and p38δ MAPK isoforms in promoting doxorubicin (DOX) cardiotoxicity. We show that p38δ and p38γ/δ systemic deletion was cardioprotective in female but not in male mice. Cardiac structure and function were preserved in DOX-treated p38δ-/- females and autophagy marker was increased.


Assuntos
Doxorrubicina , Cardiopatias/prevenção & controle , Proteína Quinase 13 Ativada por Mitógeno/deficiência , Miocárdio/enzimologia , Animais , Autofagia/efeitos dos fármacos , Cardiotoxicidade , Modelos Animais de Doenças , Feminino , Fibrose , Técnicas de Inativação de Genes , Cardiopatias/enzimologia , Cardiopatias/genética , Cardiopatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/deficiência , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/genética , Miocárdio/patologia , Fatores Sexuais , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
17.
Am J Physiol Heart Circ Physiol ; 319(5): H1059-H1068, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33036546

RESUMO

The prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly reached pandemic proportions, and knowledge about this virus and coronavirus disease 2019 (COVID-19) has expanded rapidly. This review focuses primarily on mechanisms that contribute to acute cardiac injury and dysfunction, which are common in patients with severe disease. The etiology of cardiac injury is multifactorial, and the extent is likely enhanced by preexisting cardiovascular disease. Disruption of homeostatic mechanisms secondary to pulmonary pathology ranks high on the list, and there is growing evidence that direct infection of cardiac cells can occur. Angiotensin-converting enzyme 2 (ACE2) plays a central role in COVID-19 and is a necessary receptor for viral entry into human cells. ACE2 normally not only eliminates angiotensin II (Ang II) by converting it to Ang-(1-7) but also elicits a beneficial response profile counteracting that of Ang II. Molecular analyses of single nuclei from human hearts have shown that ACE2 is most highly expressed by pericytes. Given the important roles that pericytes have in the microvasculature, infection of these cells could compromise myocardial supply to meet metabolic demand. Furthermore, ACE2 activity is crucial for opposing adverse effects of locally generated Ang II, so virus-mediated internalization of ACE2 could exacerbate pathology by this mechanism. While the role of cardiac pericytes in acute heart injury by SARS-CoV-2 requires investigation, expression of ACE2 by these cells has broader implications for cardiac pathophysiology.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/enzimologia , Cardiopatias/enzimologia , Peptidil Dipeptidase A/metabolismo , Pericitos/enzimologia , Pneumonia Viral/enzimologia , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Infecções por Coronavirus/virologia , Cardiopatias/fisiopatologia , Cardiopatias/virologia , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Pericitos/virologia , Pneumonia Viral/virologia , SARS-CoV-2
18.
Toxicol Appl Pharmacol ; 406: 115213, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877659

RESUMO

The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 µm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 µM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.


Assuntos
Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Coração/efeitos dos fármacos , Modelos Biológicos , Técnicas de Cultura de Tecidos , Adulto , Idoso , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Feminino , Coração/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Suínos , Trastuzumab/efeitos adversos
19.
J Mol Cell Cardiol ; 126: 86-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452906

RESUMO

BACKGROUND: The intercalated disc (ID) is important for cardiac remodeling and has become a subject of intensive research efforts. However, as yet the composition of the ID has still not been conclusively resolved and the role of many proteins identified in the ID, like Flotillin-2, is often unknown. The Flotillin proteins are known to be involved in the stabilization of cadherins and desmosomes in the epidermis and upon cancer development. However, their role in the heart has so far not been investigated. Therefore, in this study, we aimed at identifying the role of Flotillin-1 and Flotillin-2 in the cardiac ID. METHODS: Location of Flotillins in human and murine cardiac tissue was evaluated by fluorescent immunolabeling and co-immunoprecipitation. In addition, the effect of Flotillin knockout (KO) on proteins of the ID and in electrical excitation and conduction was investigated in cardiac samples of wildtype (WT), Flotillin-1 KO, Flotilin-2 KO and Flotilin-1/2 double KO mice. Consequences of Flotillin knockdown (KD) on cardiac function were studied (patch clamp and Multi Electrode Array (MEA)) in neonatal rat cardiomyocytes (NRCMs) transfected with siRNAs against Flotillin-1 and/or Flotillin-2. RESULTS: First, we confirmed presence in the ID and mutual binding of Flotillin-1 and Flotillin-2 in murine and human cardiac tissue. Flotillin KO mice did not show cardiac fibrosis, nor hypertrophy or changes in expression of the desmosomal ID proteins. However, protein expression of the cardiac sodium channel NaV1.5 was significantly decreased in Flotillin-1 and Flotillin-1/2 KO mice compared to WT mice. In addition, sodium current density showed a significant decrease upon Flotillin-1/2 KD in NRCMs as compared to scrambled siRNA-transfected NRCMs. MEA recordings of Flotillin-2 KD NRCM cultures showed a significantly decreased spike amplitude and a tendency of a reduced spike slope when compared to control and scrambled siRNA-transfected cultures. CONCLUSIONS: In this study, we demonstrate the presence of Flotillin-1, in addition to Flotillin-2 in the cardiac ID. Our findings indicate a modulatory role of Flotillins on NaV1.5 expression at the ID, with potential consequences for cardiac excitation.


Assuntos
Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Animais , Animais Recém-Nascidos , Conexina 43/metabolismo , Humanos , Ativação do Canal Iônico , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ratos Wistar
20.
Circ Res ; 121(5): 549-563, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28674041

RESUMO

RATIONALE: Notch signaling programs cardiac conduction during development, and in the adult ventricle, injury-induced Notch reactivation initiates global transcriptional and epigenetic changes. OBJECTIVE: To determine whether Notch reactivation may stably alter atrial ion channel gene expression and arrhythmia inducibility. METHODS AND RESULTS: To model an injury response and determine the effects of Notch signaling on atrial electrophysiology, we transiently activate Notch signaling within adult myocardium using a doxycycline-inducible genetic system (inducible Notch intracellular domain [iNICD]). Significant heart rate slowing and frequent sinus pauses are observed in iNICD mice when compared with controls. iNICD mice have structurally normal atria and preserved sinus node architecture, but expression of key transcriptional regulators of sinus node and atrial conduction, including Nkx2-5 (NK2 homeobox 5), Tbx3, and Tbx5 are dysregulated. To determine whether the induced electrical changes are stable, we transiently activated Notch followed by a prolonged washout period and observed that, in addition to decreased heart rate, atrial conduction velocity is persistently slower than control. Consistent with conduction slowing, genes encoding molecular determinants of atrial conduction velocity, including Scn5a (Nav1.5) and Gja5 (connexin 40), are persistently downregulated long after a transient Notch pulse. Consistent with the reduction in Scn5a transcript, Notch induces global changes in the atrial action potential, including a reduced dVm/dtmax. In addition, programmed electrical stimulation near the murine pulmonary vein demonstrates increased susceptibility to atrial arrhythmias in mice where Notch has been transiently activated. Taken together, these results suggest that transient Notch activation persistently alters ion channel gene expression and atrial electrophysiology and predisposes to an arrhythmogenic substrate. CONCLUSIONS: Our data provide evidence that Notch signaling regulates transcription factor and ion channel gene expression within adult atrial myocardium. Notch reactivation induces electrical changes, resulting in sinus bradycardia, sinus pauses, and a susceptibility to atrial arrhythmias, which contribute to a phenotype resembling sick sinus syndrome.


Assuntos
Receptores Notch/biossíntese , Receptores Notch/genética , Síndrome do Nó Sinusal/genética , Síndrome do Nó Sinusal/metabolismo , Animais , Expressão Gênica , Sistema de Condução Cardíaco/metabolismo , Canais Iônicos/biossíntese , Canais Iônicos/genética , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Técnicas de Cultura de Órgãos , Fatores de Tempo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA