Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(11): 102467, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087839

RESUMO

Among voltage-gated potassium channel (KV) isoforms, KV1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands. The known high-affinity ligands of KV1.6 lack selectivity, and conversely, its selective ligands show low affinity. Here, we present a designer peptide with both high affinity and selectivity to KV1.6. Previously, we have demonstrated that KV isoform-selective peptides can be constructed based on the simplistic α-hairpinin scaffold, and we obtained a number of artificial Tk-hefu peptides showing selective blockage of KV1.3 in the submicromolar range. We have now proposed amino acid substitutions to enhance their activity. As a result, we have been able to produce Tk-hefu-11 that shows an EC50 of ≈70 nM against KV1.3. Quite surprisingly, Tk-hefu-11 turns out to block KV1.6 with even higher potency, presenting an EC50 of ≈10 nM. Furthermore, we have solved the peptide structure and used molecular dynamics to investigate the determinants of selective interactions between artificial α-hairpinins and KV channels to explain the dramatic increase in KV1.6 affinity. Since KV1.3 is not highly expressed in the nervous system, we hope that Tk-hefu-11 will be useful in studies of KV1.6 and its functions.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Sequência de Aminoácidos , Bloqueadores dos Canais de Potássio/química , Peptídeos/química , Ligantes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.5/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003610

RESUMO

Membrane-spanning portions of proteins' polypeptide chains are commonly known as their transmembrane domains (TMDs). The structural organisation and dynamic behaviour of TMDs from proteins of various families, be that receptors, ion channels, enzymes etc., have been under scrutiny on the part of the scientific community for the last few decades. The reason for such attention is that, apart from their obvious role as an "anchor" in ensuring the correct orientation of the protein's extra-membrane domains (in most cases functionally important), TMDs often actively and directly contribute to the operation of "the protein machine". They are capable of transmitting signals across the membrane, interacting with adjacent TMDs and membrane-proximal domains, as well as with various ligands, etc. Structural data on TMD arrangement are still fragmentary at best due to their complex molecular organisation as, most commonly, dynamic oligomers, as well as due to the challenges related to experimental studies thereof. Inter alia, this is especially true for viral fusion proteins, which have been the focus of numerous studies for quite some time, but have provoked unprecedented interest in view of the SARS-CoV-2 pandemic. However, despite numerous structure-centred studies of the spike (S) protein effectuating target cell entry in coronaviruses, structural data on the TMD as part of the entire spike protein are still incomplete, whereas this segment is known to be crucial to the spike's fusogenic activity. Therefore, in attempting to bring together currently available data on the structure and dynamics of spike proteins' TMDs, the present review aims to tackle a highly pertinent task and contribute to a better understanding of the molecular mechanisms underlying virus-mediated fusion, also offering a rationale for the design of novel efficacious methods for the treatment of infectious diseases caused by SARS-CoV-2 and related viruses.


Assuntos
Fusão de Membrana , Proteínas Virais de Fusão , Humanos , Fusão de Membrana/fisiologia , Domínios Proteicos , Proteínas Virais de Fusão/metabolismo , Peptídeos , SARS-CoV-2/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569743

RESUMO

Roughly 1% of the global population is susceptible to celiac disease (CD)-inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, which is constraining and costly. An alternative approach is based upon the development and oral reception of effective peptidases that degrade in the stomach immunogenic proline- and glutamine-rich gliadin peptides, which are the cause of the severe reaction in the intestine. In previous research, we have established that the major digestive peptidase of an insect Tribolium castaneum-cathepsin L-hydrolyzes immunogenic prolamins after Gln residues but is unstable in the extremely acidic environment (pH 2-4) of the human stomach and cannot be used as a digestive aid. In this work, using molecular dynamics simulations, we discover the probable cause of the pH instability of cathepsin L-loss of the catalytically competent rotameric state of one of the active site residues, His 275. To "fix" the correct orientation of this residue, we designed a V277A mutant variant, which extends the range of stability of the peptidase in the acidic environment while retaining most of its activity. We suggest this protein as a lead glutenase for the development of oral medical preparation that fights CD and gluten intolerance in susceptible people.

4.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674846

RESUMO

To date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the Bacillus licheniformis VK21 strain, seems to contain two putative lipid II binding sites in its N-terminal and C-terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the C-terminal mersacidin-like site is involved in the interaction with lipid II. These data were confirmed by the MD simulations. The contact area of lipid II includes pyrophosphate and disaccharide residues along with the first isoprene units of bactoprenol. MD also showed the potential for the formation of a stable N-terminal nisin-like complex; however, the conditions necessary for its implementation in vitro remain unknown. Overall, our results clarify the picture of two component lantibiotics mechanism of antimicrobial action.


Assuntos
Antibacterianos , Bacteriocinas , Antibacterianos/química , Peptidoglicano/metabolismo , Bacteriocinas/química , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835322

RESUMO

Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.


Assuntos
Desenvolvimento de Medicamentos , Receptor de Insulina , Humanos , Domínios Proteicos , Receptor de Insulina/química , Receptor de Insulina/fisiologia , Transdução de Sinais
6.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003673

RESUMO

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.


Assuntos
Herpesvirus Humano 1 , Perileno , Fotoquimioterapia , Perileno/farmacologia , Oxigênio Singlete , Antivirais/farmacologia , Antivirais/química , Fármacos Fotossensibilizantes/farmacologia
7.
Molecules ; 28(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38138539

RESUMO

In our ongoing quest to design effective antimicrobial peptides (AMPs), this study aimed to elucidate the mechanisms governing cyclic amphiphilic AMPs and their interactions with membranes. The objective was to discern the nature of these interactions and understand how peptide sequence and structure influence antimicrobial activity. We introduced modifications into the established cyclic AMP peptide, [W4R4], incorporating an extra aromatic hydrophobic residue (W), a positively charged residue (R), or the unique 2,5-diketopiperazine (DKP). This study systematically explored the structure-activity relationships (SARs) of a series of cyclic peptides derived from the [W4R4] scaffold, including the first synthesis and evaluation of [W4R4(DKP)]. Structural, dynamic, hydrophobic, and membrane-binding properties of four cyclic peptides ([W4R4], [W5R4], [W4R5], [W4R4(DKP)]) were explored using molecular dynamics simulations within a DOPC/DOPG lipid bilayer that mimics the bacterial membrane. The results revealed distinct SARs linking antimicrobial activity to parameters such as conformational plasticity, immersion depth in the bilayer, and population of the membrane binding mode. Notably, [W4R5] exhibited an optimal "activity/binding to the bacterial membrane" pattern. This multidisciplinary approach efficiently decoded finely regulated SAR profiles, laying a foundation for the rational design of novel antimicrobial peptides.


Assuntos
Anti-Infecciosos , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Bicamadas Lipídicas/química , Sequência de Aminoácidos , Bactérias/metabolismo
8.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499114

RESUMO

S-acylation is a post-translational linkage of long chain fatty acids to cysteines, playing a key role in normal physiology and disease. In human cells, the reaction is catalyzed by a family of 23 membrane DHHC-acyltransferases (carrying an Asp-His-His-Cys catalytic motif) in two stages: (1) acyl-CoA-mediated autoacylation of the enzyme; and (2) further transfer of the acyl chain to a protein substrate. Despite the availability of a 3D-structure of human acyltransferase (hDHHC20), the molecular aspects of lipid selectivity of DHHC-acyltransferases remain unclear. In this paper, using molecular dynamics (MD) simulations, we studied membrane-bound hDHHC20 right before the acylation by C12-, C14-, C16-, C18-, and C20-CoA substrates. We found that: (1) regardless of the chain length, its terminal methyl group always reaches the "ceiling" of the enzyme's cavity; (2) only for C16, an optimal "reactivity" (assessed by a simple geometric criterion) permits the autoacylation; (3) in MD, some key interactions between an acyl-CoA and a protein differ from those in the reference crystal structure of the C16-CoA-hDHHS20 mutant complex (probably, because this structure corresponds to a non-native dimer). These features of specific recognition of full-size acyl-CoA substrates support our previous hypothesis of "geometric and physicochemical selectivity" derived for simplified acyl-CoA analogues.


Assuntos
Acil Coenzima A , Aciltransferases , Humanos , Acil Coenzima A/metabolismo , Acilação , Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Especificidade por Substrato
9.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012488

RESUMO

Understanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on its primary structure. We performed amino acid sequence pattern matching and compared the molecular hydrophobicity potential (MHP) distribution on the helix surface against TM homotrimers with known 3D structures and selected an appropriate template for homology modeling. We then iteratively built a model of spike TMD, adjusting "dynamic MHP portraits" and residue variability motifs. The stability of this model, with and without palmitoyl modifications downstream of the TMD, and several alternative configurations (including a recent NMR structure), was tested in all-atom molecular dynamics simulations in a POPC bilayer mimicking the viral envelope. Our model demonstrated unique stability under the conditions applied and conforms to known basic principles of TM helix packing. The original computational framework looks promising and could potentially be employed in the construction of 3D models of TM trimers for a wide range of membrane proteins.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Simulação de Dinâmica Molecular , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química
10.
Biophys J ; 120(12): 2471-2481, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33932436

RESUMO

The α-Hairpinins are a family of plant defense peptides with a common fold presenting two short α-helices stabilized by two invariant S-S-bridges. We have shown previously that substitution of just two amino acid residues in a wheat α-hairpinin Tk-AMP-X2 leads to Tk-hefu-2 that features specific affinity to voltage-gated potassium channels KV1.3. Here, we utilize a combined molecular modeling approach based on molecular dynamics simulations and protein surface topography technique to improve the affinity of Tk-hefu-2 to KV1.3 while preserving its specificity. An important advance of this work compared with our previous studies is transition from the analysis of various physicochemical properties of an isolated toxin molecule to its consideration in complex with its target, a membrane-bound ion channel. As a result, a panel of computationally designed Tk-hefu-2 derivatives was synthesized and tested against KV1.3. The most active mutant Tk-hefu-10 showed a half-maximal inhibitory concentration of ∼150 nM being >10 times more active than Tk-hefu-2 and >200 times more active than the original Tk-hefu. We conclude that α-hairpinins provide an attractive disulfide-stabilized scaffold for the rational design of ion channel inhibitors. Furthermore, the success rate can be considerably increased by the proposed "target-based" iterative strategy of molecular design.


Assuntos
Bloqueadores dos Canais de Potássio , Venenos de Escorpião , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Peptídeos , Bloqueadores dos Canais de Potássio/farmacologia , Proteínas
11.
J Chem Inf Model ; 61(1): 385-399, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33382618

RESUMO

For many peripheral membrane-binding polypeptides(MBPs), especially ß-structural ones, the precise molecular mechanisms of membrane insertion remain unclear. In most cases, only the terminal water-soluble and membrane-bound states have been elucidated, whereas potential functionally important intermediate stages are still not understood in sufficient detail. In this study, we present one of the first successful attempts to describe step-by-step embedding of the MBP cardiotoxin 2 (CT2) from cobra Naja oxiana venom into a lipid bilayer at the atomistic level. CT2 possesses a highly conservative and rigid ß-structured three-finger fold shared by many other exogenous and endogenous proteins performing a wide variety of functions. The incorporation of CT2 into the lipid bilayer was analyzed via a 2 µs all-atom molecular dynamics (MD) simulation without restraints. This process was shown to occur over a number of distinct steps, while the geometry of initial membrane attachment drastically differs from that of the final equilibrated state. In the latter one, the hydrophobic platform ("bottom") formed by the tips of the three loops is deeply buried into the lipid bilayer. This agrees well with the NMR data obtained earlier for CT2 in detergent micelles. However, the bottom is too bulky to insert itself into the membrane at once. Instead, the gradual immersion of CT2 initiated by the loop-1 was observed. This initial binding stage was also demonstrated in a series of MD runs with varying starting orientations of the toxin with respect to the bilayer surface. Apart from the nonspecific long-range electrostatic attraction and hydrophobic match/mismatch factor, several specific lipid-binding sites were identified in CT2. They were shown to promote membrane insertion by engaging in strong interactions with lipid head groups, fine-tuning the toxin-membrane accommodation. We therefore propose that the toxin insertion relies on the interplay of nonspecific and specific interactions, which are determined by the "dynamic molecular portraits" of the two players, the protein and the membrane. The proposed model does not require protein oligomerization for membrane insertion and can be further employed to design MBPs with predetermined properties with regard to particular membrane targets.


Assuntos
Proteínas Cardiotóxicas de Elapídeos , Sequência de Aminoácidos , Animais , Venenos Elapídicos , Bicamadas Lipídicas , Naja naja
12.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200697

RESUMO

To date, it has been reliably shown that the lipid bilayer/water interface can be thoroughly characterized by a sophisticated so-called "dynamic molecular portrait". The latter reflects a combination of time-dependent surface distributions of various physicochemical properties, inherent in both model lipid bilayers and natural multi-component cell membranes. One of the most important features of biomembranes is their mosaicity, which is expressed in the constant presence of lateral inhomogeneities, the sizes and lifetimes of which vary in a wide range-from 1 to 103 nm and from 0.1 ns to milliseconds. In addition to the relatively well-studied macroscopic domains (so-called "rafts"), the analysis of micro- and nanoclusters (or domains) that form an instantaneous picture of the distribution of structural, dynamic, hydrophobic, electrical, etc., properties at the membrane-water interface is attracting increasing interest. This is because such nanodomains (NDs) have been proven to be crucial for the proper membrane functioning in cells. Therefore, an understanding with atomistic details the phenomena associated with NDs is required. The present mini-review describes the recent results of experimental and in silico studies of spontaneously formed NDs in lipid membranes. The main attention is paid to the methods of ND detection, characterization of their spatiotemporal parameters, the elucidation of the molecular mechanisms of their formation. Biological role of NDs in cell membranes is briefly discussed. Understanding such effects creates the basis for rational design of new prospective drugs, therapeutic approaches, and artificial membrane materials with specified properties.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
13.
J Biol Chem ; 294(48): 18349-18359, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31533989

RESUMO

Tk-hefu is an artificial peptide designed based on the α-hairpinin scaffold, which selectively blocks voltage-gated potassium channels Kv1.3. Here we present its spatial structure resolved by NMR spectroscopy and analyze its interaction with channels using computer modeling. We apply protein surface topography to suggest mutations and increase Tk-hefu affinity to the Kv1.3 channel isoform. We redesign the functional surface of Tk-hefu to better match the respective surface of the channel pore vestibule. The resulting peptide Tk-hefu-2 retains Kv1.3 selectivity and displays ∼15 times greater activity compared with Tk-hefu. We verify the mode of Tk-hefu-2 binding to the channel outer vestibule experimentally by site-directed mutagenesis. We argue that scaffold engineering aided by protein surface topography represents a reliable tool for design and optimization of specific ion channel ligands.


Assuntos
Canal de Potássio Kv1.3/química , Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Proteínas/química , Sequência de Aminoácidos , Animais , Humanos , Canal de Potássio Kv1.3/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Dinâmica Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo , Propriedades de Superfície
14.
Bioorg Med Chem Lett ; 30(3): 126890, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870648

RESUMO

Antibacterial activity of the three-finger toxins from cobra venom, including cytotoxin 3 from N. kaouthia, cardiotoxin-like basic polypeptide A5 from N. naja (CLBP), and alpha-neurotoxin from N. oxiana venom, was investigated. All toxins failed to influence Gram-negative bacteria. The most pronounced activity against Bacillus subtilis was demonstrated by CLBP. The latter is ascribed to the presence of additional Lys-residues within the membrane-binding motif of this toxin.


Assuntos
Antibacterianos/química , Venenos Elapídicos/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Cardiotoxinas/química , Elapidae/metabolismo , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Estrutura Terciária de Proteína , Staphylococcus aureus/efeitos dos fármacos
15.
Int J Mol Sci ; 20(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480555

RESUMO

Solvation effects play a key role in chemical and biological processes. The microscopic properties of water near molecular surfaces are radically different from those in the bulk. Furthermore, the behavior of water in confined volumes of a nanometer scale, including transmembrane pores of ion channels, is especially nontrivial. Knowledge at the molecular level of structural and dynamic parameters of water in such systems is necessary to understand the mechanisms of ion channels functioning. In this work, the results of molecular dynamics (MD) simulations of water in the pore and selectivity filter domains of TRPV1 (Transient Receptor Potential Vanilloid type 1) membrane channel are considered. These domains represent nanoscale volumes with strongly amphiphilic walls, where physical behavior of water radically differs from that of free hydration (e.g., at protein interfaces) or in the bulk. Inside the pore and filter domains, water reveals a very heterogeneous spatial distribution and unusual dynamics: It forms compact areas localized near polar groups of particular residues. Residence time of water molecules in such areas is at least 1.5 to 3 times larger than that observed for similar groups at the protein surface. Presumably, these water "blobs" play an important role in the functional activity of TRPV1. In particular, they take part in hydration of the hydrophobic TRPV1 pore by localizing up to six waters near the so-called "lower gate" of the channel and reducing by this way the free energy barrier for ion and water transport. Although the channel is formed by four identical protein subunits, which are symmetrically packed in the initial experimental 3D structure, in the course of MD simulations, hydration of the same amino acid residues of individual subunits may differ significantly. This greatly affects the microscopic picture of the distribution of water in the channel and, potentially, the mechanism of its functioning. Therefore, reconstruction of the full picture of TRPV1 channel solvation requires thorough atomistic simulations and analysis. It is important that the naturally occurring porous volumes, like ion-conducting protein domains, reveal much more sophisticated and fine-tuned regulation of solvation than, e.g., artificially designed carbon nanotubes.


Assuntos
Simulação de Dinâmica Molecular , Canais de Cátion TRPV/química , Água/química , Animais , Humanos , Domínios Proteicos , Canais de Cátion TRPV/metabolismo
16.
Expert Rev Proteomics ; 15(11): 873-886, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30328726

RESUMO

INTRODUCTION: Being important representatives of various proteomes, membrane-active cationic peptides (CPs) are attractive objects as lead compounds in the design of new antibacterial, anticancer, antifungal, and antiviral molecules. Numerous CPs are found in insect and snake venoms, where many of them reveal cytolytic properties. Due to advances in omics technologies, the number of such peptides is growing dramatically. Areas covered: To understand structure-function relationships for CPs in a living cell, detailed analysis of their hydrophobic/hydrophilic properties is indispensable. We consider two structural classes of membrane-active CPs: latarcins (Ltc) from spider and cardiotoxins (CTXs) from snake venoms. While the former are void off disulfide bonds and conformationally flexible, the latter are structurally rigid and cross-linked with disulfide bonds. In order to elucidate structure-activity relationships behind their antibacterial, anticancer, and hemolytic effects, the properties of these polypeptides are considered on a side-by-side basis. Expert commentary: An ever-increasing number of venom-derived membrane-active polypeptides require new methods for identification of their functional propensities and sequence-based design of novel pharmacological substances. We address these issues considering a number of the designed peptides, based either on Ltc or CTX sequences. Experimental and computer modeling techniques required for these purposes are delineated.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Cardiotoxinas/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Cardiotoxinas/química , Dissulfetos/química , Desenho de Fármacos , Hemolíticos/química , Hemolíticos/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/metabolismo , Venenos de Aranha/química , Relação Estrutura-Atividade
17.
Biochim Biophys Acta Gen Subj ; 1862(6): 1410-1420, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571748

RESUMO

BACKGROUND: Prior studies of the human growth hormone receptor (GHR) revealed a distinct role of spatial rearrangements of its dimeric transmembrane domain in signal transduction across membrane. Detailed structural information obtained in the present study allowed elucidating the bases of such rearrangement and provided novel insights into receptor functioning. METHODS: We investigated the dimerization of recombinant TMD fragment GHR254-294 by means of high-resolution NMR in DPC micelles and molecular dynamics in explicit POPC membrane. RESULTS: We resolved two distinct dimeric structures of GHR TMD coexisting in membrane-mimicking micellar environment and providing left- and right-handed helix-helix association via different dimerization motifs. Based on the available mutagenesis data, the conformations correspond to the dormant and active receptor states and are distinguished by cis-trans isomerization of Phe-Pro266 bond in the transmembrane helix entry. Molecular dynamic relaxations of the structures in lipid bilayer revealed the role of the proline residue in functionally significant rearrangements of the adjacent juxtamembrane region supporting alternation between protein-protein and protein-lipid interactions of this region that can be triggered by ligand binding. Also, the importance of juxtamembrane SS bonding for signal persistency, and somewhat unusual aspects of transmembrane region interaction with water molecules were demonstrated. CONCLUSIONS: Two alternative dimeric structures of GHR TMD attributed to dormant and active receptor states interchange via allosteric rearrangements of transmembrane helices and extracellular juxtamembrane regions that support coordination between protein-protein and protein-lipid interactions. GENERAL SIGNIFICANCE: This study provides a holistic vision of GHR signal transduction across the membrane emphasizing the role of protein-lipid interactions.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica , Membrana Celular/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Transdução de Sinais
18.
Biochemistry ; 56(12): 1697-1705, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28291355

RESUMO

The epidermal growth factor receptor (EGFR) family is an important class of receptor tyrosine kinases, mediating a variety of cellular responses in normal biological processes and in pathological states of multicellular organisms. Different modes of dimerization of the human EGFR transmembrane domain (TMD) in different membrane mimetics recently prompted us to propose a novel signal transduction mechanism based on protein-lipid interaction. However, the experimental evidence for it was originally obtained with slightly different TMD fragments used in the two different mimetics, compromising the validity of the comparison. To eliminate ambiguity, we determined the nuclear magnetic resonance (NMR) structure of the bicelle-incorporated dimer of the EGFR TMD fragment identical to the one previously used in micelles. The NMR results augmented by molecular dynamics simulations confirm the mutual influence of the TMD and lipid environment, as is required for the proposed lipid-mediated activation mechanism. They also reveal the possible functional relevance of a subtle interplay between the concurrent processes in the lipid and protein during signal transduction.


Assuntos
Membrana Celular/química , Receptores ErbB/química , Bicamadas Lipídicas/química , Peptídeos/química , Transdução de Sinais/genética , Sequência de Aminoácidos , Membrana Celular/metabolismo , Clonagem Molecular , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Micelas , Simulação de Dinâmica Molecular , Peptídeos/genética , Peptídeos/metabolismo , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Biochemistry ; 56(34): 4468-4477, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28749688

RESUMO

Today, recombinant proteins are quite widely used in biomedical and biotechnological applications. At the same time, the question about their full equivalence to the native analogues remains unanswered. To gain additional insight into this problem, intimate atomistic details of a relatively simple protein, small and structurally rigid recombinant cardiotoxin I (CTI) from cobra Naja oxiana venom, were characterized using nuclear magnetic resonance (NMR) spectroscopy and atomistic molecular dynamics (MD) simulations in water. Compared to the natural protein, it contains an additional Met residue at the N-terminus. In this work, the NMR-derived spatial structure of uniformly 13C- and 15N-labeled CTI and its dynamic behavior were investigated and subjected to comparative analysis with the corresponding data for the native toxin. The differences were found in dihedral angles of only a single residue, adjacent to the N-terminal methionine. Microsecond-long MD traces of the toxins reveal an increased flexibility in the residues spatially close to the N-Met. As the detected structural and dynamic changes of the two CTI models do not result in substantial differences in their cytotoxicities, we assume that the recombinant protein can be used for many purposes as a reasonable surrogate of the native one. In addition, we discuss general features of the spatial organization of cytotoxins, implied by the results of the current combined NMR and MD study.


Assuntos
Venenos Elapídicos/química , Elapidae , Simulação de Dinâmica Molecular , Animais , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Biochim Biophys Acta Biomembr ; 1859(4): 561-576, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27884807

RESUMO

Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Transdução de Sinais , Regulação Alostérica , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Multimerização Proteica , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA