Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(5): 225, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389104

RESUMO

Zn2+, Mg2+ and Ca2+ are essential divalent cations implicated in many metabolic processes and signalling pathways. An emerging new paradigm is that the organismal balance of these cations predominantly depends on a common gatekeeper, the channel-kinase TRPM7. Despite extensive electrophysiological studies and recent cryo-EM analysis, an open question is how the channel activity of TRPM7 is activated. Here, we performed site-directed mutagenesis of mouse TRPM7 in conjunction with patch-clamp assessment of whole-cell and single-channel activity and molecular dynamics (MD) simulations to show that the side chains of conserved N1097 form an inter-subunit Mg2+ regulatory site located in the lower channel gate of TRPM7. Our results suggest that intracellular Mg2+ binds to this site and stabilizes the TRPM7 channel in the closed state, whereas the removal of Mg2+ favours the opening of TRPM7. Hence, our study identifies the structural underpinnings through which the TRPM7 channel is controlled by cytosolic Mg2+, representing a new structure-function relationship not yet explored among TRPM channels.


Assuntos
Canais de Cátion TRPM , Animais , Cátions Bivalentes/metabolismo , Magnésio/metabolismo , Camundongos , Fosfotransferases/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA