Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(37): e202203061, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35656865

RESUMO

We report a bioinformatic workflow and subsequent discovery of a new polyethylene terephthalate (PET) hydrolase, which we named MG8, from the human saliva metagenome. MG8 has robust PET plastic degradation activities under different temperature and salinity conditions, outperforming several naturally occurring and engineered hydrolases in degrading PET. Moreover, we genetically encoded 2,3-diaminopropionic acid (DAP) in place of the catalytic serine residue of MG8, thereby converting a PET hydrolase into a covalent binder for bio-functionalization of PET. We show that MG8(DAP), in conjunction with a split green fluorescent protein system, can be used to attach protein cargos to PET as well as other polyester plastics. The discovery of a highly active PET hydrolase from the human metagenome-currently an underexplored resource for industrial enzyme discovery-as well as the repurposing of such an enzyme into a plastic functionalization tool, should facilitate ongoing efforts to degrade and maximize reusability of PET.


Assuntos
Hidrolases , Polietilenotereftalatos , Código Genético , Humanos , Hidrolases/metabolismo , Metagenoma , Plásticos/química , Polietilenotereftalatos/química , Saliva/metabolismo
2.
Nat Biomed Eng ; 4(12): 1140-1149, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32848209

RESUMO

Nucleic acid detection by isothermal amplification and the collateral cleavage of reporter molecules by CRISPR-associated enzymes is a promising alternative to quantitative PCR. Here, we report the clinical validation of the specific high-sensitivity enzymatic reporter unlocking (SHERLOCK) assay using the enzyme Cas13a from Leptotrichia wadei for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the virus that causes coronavirus disease 2019 (COVID-19)-in 154 nasopharyngeal and throat swab samples collected at Siriraj Hospital, Thailand. Within a detection limit of 42 RNA copies per reaction, SHERLOCK was 100% specific and 100% sensitive with a fluorescence readout, and 100% specific and 97% sensitive with a lateral-flow readout. For the full range of viral load in the clinical samples, the fluorescence readout was 100% specific and 96% sensitive. For 380 SARS-CoV-2-negative pre-operative samples from patients undergoing surgery, SHERLOCK was in 100% agreement with quantitative PCR with reverse transcription. The assay, which we show is amenable to multiplexed detection in a single lateral-flow strip incorporating an internal control for ribonuclease contamination, should facilitate SARS-CoV-2 detection in settings with limited resources.


Assuntos
COVID-19/diagnóstico , Proteínas Associadas a CRISPR/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Leptotrichia/enzimologia , Pandemias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA