Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Thorax ; 77(10): 988-996, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34887348

RESUMO

INTRODUCTION: Dynamic contrast-enhanced CT (DCE-CT) and positron emission tomography/CT (PET/CT) have a high reported accuracy for the diagnosis of malignancy in solitary pulmonary nodules (SPNs). The aim of this study was to compare the accuracy and cost-effectiveness of these. METHODS: In this prospective multicentre trial, 380 participants with an SPN (8-30 mm) and no recent history of malignancy underwent DCE-CT and PET/CT. All patients underwent either biopsy with histological diagnosis or completed CT follow-up. Primary outcome measures were sensitivity, specificity and overall diagnostic accuracy for PET/CT and DCE-CT. Costs and cost-effectiveness were estimated from a healthcare provider perspective using a decision-model. RESULTS: 312 participants (47% female, 68.1±9.0 years) completed the study, with 61% rate of malignancy at 2 years. The sensitivity, specificity, positive predictive value and negative predictive values for DCE-CT were 95.3% (95% CI 91.3 to 97.5), 29.8% (95% CI 22.3 to 38.4), 68.2% (95% CI 62.4% to 73.5%) and 80.0% (95% CI 66.2 to 89.1), respectively, and for PET/CT were 79.1% (95% CI 72.7 to 84.2), 81.8% (95% CI 74.0 to 87.7), 87.3% (95% CI 81.5 to 91.5) and 71.2% (95% CI 63.2 to 78.1). The area under the receiver operator characteristic curve (AUROC) for DCE-CT and PET/CT was 0.62 (95% CI 0.58 to 0.67) and 0.80 (95% CI 0.76 to 0.85), respectively (p<0.001). Combined results significantly increased diagnostic accuracy over PET/CT alone (AUROC=0.90 (95% CI 0.86 to 0.93), p<0.001). DCE-CT was preferred when the willingness to pay per incremental cost per correctly treated malignancy was below £9000. Above £15 500 a combined approach was preferred. CONCLUSIONS: PET/CT has a superior diagnostic accuracy to DCE-CT for the diagnosis of SPNs. Combining both techniques improves the diagnostic accuracy over either test alone and could be cost-effective. TRIAL REGISTRATION NUMBER: NCT02013063.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Feminino , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Análise Custo-Benefício , Estudos Prospectivos , Fluordesoxiglucose F18 , Tomografia Computadorizada por Raios X/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade
2.
Health Technol Assess ; 26(17): 1-180, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35289267

RESUMO

BACKGROUND: Current pathways recommend positron emission tomography-computerised tomography for the characterisation of solitary pulmonary nodules. Dynamic contrast-enhanced computerised tomography may be a more cost-effective approach. OBJECTIVES: To determine the diagnostic performances of dynamic contrast-enhanced computerised tomography and positron emission tomography-computerised tomography in the NHS for solitary pulmonary nodules. Systematic reviews and a health economic evaluation contributed to the decision-analytic modelling to assess the likely costs and health outcomes resulting from incorporation of dynamic contrast-enhanced computerised tomography into management strategies. DESIGN: Multicentre comparative accuracy trial. SETTING: Secondary or tertiary outpatient settings at 16 hospitals in the UK. PARTICIPANTS: Participants with solitary pulmonary nodules of ≥ 8 mm and of ≤ 30 mm in size with no malignancy in the previous 2 years were included. INTERVENTIONS: Baseline positron emission tomography-computerised tomography and dynamic contrast-enhanced computer tomography with 2 years' follow-up. MAIN OUTCOME MEASURES: Primary outcome measures were sensitivity, specificity and diagnostic accuracy for positron emission tomography-computerised tomography and dynamic contrast-enhanced computerised tomography. Incremental cost-effectiveness ratios compared management strategies that used dynamic contrast-enhanced computerised tomography with management strategies that did not use dynamic contrast-enhanced computerised tomography. RESULTS: A total of 380 patients were recruited (median age 69 years). Of 312 patients with matched dynamic contrast-enhanced computer tomography and positron emission tomography-computerised tomography examinations, 191 (61%) were cancer patients. The sensitivity, specificity and diagnostic accuracy for positron emission tomography-computerised tomography and dynamic contrast-enhanced computer tomography were 72.8% (95% confidence interval 66.1% to 78.6%), 81.8% (95% confidence interval 74.0% to 87.7%), 76.3% (95% confidence interval 71.3% to 80.7%) and 95.3% (95% confidence interval 91.3% to 97.5%), 29.8% (95% confidence interval 22.3% to 38.4%) and 69.9% (95% confidence interval 64.6% to 74.7%), respectively. Exploratory modelling showed that maximum standardised uptake values had the best diagnostic accuracy, with an area under the curve of 0.87, which increased to 0.90 if combined with dynamic contrast-enhanced computerised tomography peak enhancement. The economic analysis showed that, over 24 months, dynamic contrast-enhanced computerised tomography was less costly (£3305, 95% confidence interval £2952 to £3746) than positron emission tomography-computerised tomography (£4013, 95% confidence interval £3673 to £4498) or a strategy combining the two tests (£4058, 95% confidence interval £3702 to £4547). Positron emission tomography-computerised tomography led to more patients with malignant nodules being correctly managed, 0.44 on average (95% confidence interval 0.39 to 0.49), compared with 0.40 (95% confidence interval 0.35 to 0.45); using both tests further increased this (0.47, 95% confidence interval 0.42 to 0.51). LIMITATIONS: The high prevalence of malignancy in nodules observed in this trial, compared with that observed in nodules identified within screening programmes, limits the generalisation of the current results to nodules identified by screening. CONCLUSIONS: Findings from this research indicate that positron emission tomography-computerised tomography is more accurate than dynamic contrast-enhanced computerised tomography for the characterisation of solitary pulmonary nodules. A combination of maximum standardised uptake value and peak enhancement had the highest accuracy with a small increase in costs. Findings from this research also indicate that a combined positron emission tomography-dynamic contrast-enhanced computerised tomography approach with a slightly higher willingness to pay to avoid missing small cancers or to avoid a 'watch and wait' policy may be an approach to consider. FUTURE WORK: Integration of the dynamic contrast-enhanced component into the positron emission tomography-computerised tomography examination and the feasibility of dynamic contrast-enhanced computerised tomography at lung screening for the characterisation of solitary pulmonary nodules should be explored, together with a lower radiation dose protocol. STUDY REGISTRATION: This study is registered as PROSPERO CRD42018112215 and CRD42019124299, and the trial is registered as ISRCTN30784948 and ClinicalTrials.gov NCT02013063. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 17. See the NIHR Journals Library website for further project information.


A nodule found on a lung scan can cause concern as it may be a sign of cancer. Finding lung cancer nodules when they are small (i.e. < 3 cm) is very important. Most nodules are not cancerous. Computerised tomography (cross-sectional images created from multiple X-rays) and positron emission tomography­computerised tomography (a technique that uses a radioactive tracer combined with computerised tomography) are used to see whether or not a nodule is cancerous; although they perform well, improvements are required. This study compared dynamic contrast-enhanced computerised tomography with positron emission tomography­computerised tomography scans to find out which test is best. Dynamic contrast-enhanced computerised tomography involves injection of a special dye into the bloodstream, followed by repeated scans of the nodule over several minutes. We assessed the costs to the NHS of undertaking the different scans, relative to their benefits, to judge which option was the best value for money. We recruited 380 patients from 16 hospitals across England and Scotland, of whom 312 had both dynamic contrast-enhanced computerised tomography and positron emission tomography­computerised tomography scans. We found that current positron emission tomography­computerised tomography is more accurate, providing a correct diagnosis in 76% of cases, than the new dynamic contrast-enhanced computerised tomography, which provides a correct diagnosis in 70% of cases. Although dynamic contrast-enhanced computerised tomography cannot replace positron emission tomography­computerised tomography, it may represent good-value use of NHS resources, especially if it is performed before positron emission tomography­computerised tomography and they are used in combination. Although more research is required, it may be possible in the future to perform dynamic contrast-enhanced computerised tomography at the same time as positron emission tomography­computerised tomography in patients with suspected lung cancer or if a lung nodule is found on a lung screening programme at the time of the computerised tomography examination. This may reduce the need for some people to have positron emission tomography­computerised tomography.


Assuntos
Nódulo Pulmonar Solitário , Idoso , Análise Custo-Benefício , Humanos , Tomografia por Emissão de Pósitrons , Nódulo Pulmonar Solitário/diagnóstico por imagem , Avaliação da Tecnologia Biomédica , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA