Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
J Biol Chem ; 299(2): 102911, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642187

RESUMO

The attachment of a sugar to a hydrophobic lipid carrier is the first step in the biosynthesis of many glycoconjugates. In the halophilic archaeon Haloarcula hispanica, HAH_1206, renamed AepG, is a predicted glycosyltransferase belonging to the CAZy Group 2 family that shares a conserved amino acid sequence with dolichol phosphate mannose synthases. In this study, the function of AepG was investigated by genetic and biochemical approaches. We found that aepG deletion led to the disappearance of dolichol phosphate-glucuronic acid. Our biochemical assays revealed that recombinant cellulose-binding, domain-tagged AepG could catalyze the formation of dolichol phosphate-glucuronic acid in time- and dose-dependent manners. Based on the in vivo and in vitro analyses, AepG was confirmed to be a dolichol phosphate glucuronosyltransferase involved in the synthesis of the acidic exopolysaccharide produced by H. hispanica. Furthermore, lack of aepG resulted in hindered growth and cell aggregation in high salt medium, indicating that AepG is vital for the adaptation of H. hispanica to a high salt environment. In conclusion, AepG is the first dolichol phosphate glucuronosyltransferase identified in any of the three domains of life and, moreover, offers a starting point for further investigation into the diverse pathways used for extracellular polysaccharide biosynthesis in archaea.


Assuntos
Haloarcula , Sequência de Aminoácidos , Fosfatos de Dolicol/metabolismo , Haloarcula/metabolismo , Transferases/metabolismo , Polissacarídeos/metabolismo
2.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068123

RESUMO

Halobacterium salinarum is a halophilic (salt-loving) archaeon that grows in salt concentrations near or at saturation. Although isolated from salted fish a century ago, it was the 1971 discovery of bacteriorhodopsin, the light-driven proton pump, that raised interest in Hbt. salinarum across a range of disciplines, including biophysics, chemistry, molecular evolution and biotechnology. Hbt. salinarum have since contributed to numerous discoveries, such as advances in membrane protein structure determination and the first example of a non-eukaryal glycoprotein. Work on Hbt. salinarum, one of the species used to define Archaea, has also elucidated molecular workings in the third domain. Finally, Hbt. salinarum presents creative solutions to the challenges of life in high salt.


Assuntos
Halobacterium salinarum , Cloreto de Sódio , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Cloreto de Sódio/metabolismo , Archaea/genética
3.
Entropy (Basel) ; 25(9)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37761650

RESUMO

In recent years, it has become clear that intrinsically disordered protein segments play diverse functional roles in many cellular processes, thus leading to a reassessment of the classical structure-function paradigm. One class of intrinsically disordered protein segments is entropic clocks, corresponding to unstructured random protein chains involved in timing cellular processes. Such clocks were shown to modulate ion channel processes underlying action potential generation, propagation, and transmission. In this review, we survey the role of entropic clocks in timing intra- and inter-molecular binding events of voltage-activated potassium channels involved in gating and clustering processes, respectively, and where both are known to occur according to a similar 'ball and chain' mechanism. We begin by delineating the thermodynamic and timing signatures of a 'ball and chain'-based binding mechanism involving entropic clocks, followed by a detailed analysis of the use of such a mechanism in the prototypical Shaker voltage-activated K+ channel model protein, with particular emphasis on ion channel clustering. We demonstrate how 'chain'-level alternative splicing of the Kv channel gene modulates entropic clock-based 'ball and chain' inactivation and clustering channel functions. As such, the Kv channel model system exemplifies how linkage between alternative splicing and intrinsic disorder enables the functional diversity underlying changes in electrical signaling.

4.
Trends Biochem Sci ; 43(1): 10-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183665

RESUMO

In the three domains of life, lipid-linked glycans contribute to various cellular processes ranging from protein glycosylation to glycosylphosphatidylinositol anchor biosynthesis to peptidoglycan assembly. In generating many of these glycoconjugates, phosphorylated polyprenol-based lipids are charged with single sugars by polyprenol phosphate glycosyltransferases. The resultant substrates serve as glycosyltransferase donors, complementing the more common nucleoside diphosphate sugars. It had been accepted that these polyprenol phosphate glycosyltransferases acted similarly, given their considerable sequence homology. Recent findings, however, suggest that matters may not be so simple. In this Opinion we propose that the stereochemistry of sugar addition by polyprenol phosphate glycosyltransferases is not conserved across evolution, even though the GT-A fold that characterizes such enzymes is omnipresent.


Assuntos
Glicosiltransferases/metabolismo , Pentanóis/química , Pentanóis/metabolismo , Fosfatos/metabolismo , Polímeros/química , Polímeros/metabolismo , Hemiterpenos , Humanos , Fosfatos/química , Estereoisomerismo
5.
J Bacteriol ; 204(1): e0044721, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633871

RESUMO

Haloferax volcanii AglD is currently the only archaeal dolichol phosphate (DolP)-mannose synthase shown to participate in N-glycosylation. However, the relation between AglD and Pyrococcus furiosus PF0058, the only archaeal DolP-mannose synthase for which structural information is presently available, was unclear. In this report, similarities between the PF0058 and AglD catalytic domains were revealed. At the same time, AglD includes a transmembrane domain far longer than that of PF0058 or other DolP-mannose synthases. To determine whether this extension affords AglD functions in addition to generating mannose-charged DolP, a series of Hfx. volcanii strains expressing truncated versions of AglD was generated. Mass spectrometry revealed that a version of AglD comprising the catalytic domain and only two of the six to nine predicted membrane-spanning domains could mediate mannose addition to DolP. However, in cells expressing this or other truncated versions of AglD, mannose was not transferred from the lipid to the protein-bound tetrasaccharide precursor of the N-linked pentasaccharide normally decorating Hfx. volcanii glycoproteins. These results thus point to AglD as contributing to additional aspects of Hfx. volcanii N-glycosylation beyond charging DolP with mannose. Accordingly, the possibility that AglD, possibly in coordination with AglR, translocates DolP-mannose across the plasma membrane is discussed.


Assuntos
Proteínas Arqueais/metabolismo , Dolicol Monofosfato Manose/metabolismo , Haloferax volcanii/enzimologia , Manosiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Domínio Catalítico , Dolicol Monofosfato Manose/química , Etilenodiaminas , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Manosiltransferases/genética , Fenóis , Conformação Proteica , Domínios Proteicos
6.
Bioessays ; 42(3): e1900207, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31994760

RESUMO

In concert with the selective pressures affecting protein folding and function in the extreme environments in which they can exist, proteins in Archaea have evolved to present permanent molecular adaptations at the amino acid sequence level. Such adaptations may not, however, suffice when Archaea encounter transient changes in their surroundings. Post-translational modifications offer a rapid and reversible layer of adaptation for proteins to cope with such situations. Here, it is proposed that Archaea further augment their ability to survive changing growth conditions by modifying the extent, position, and, where relevant, the composition of different post-translational modifications, as a function of the environment. Support for this hypothesis comes from recent reports describing how patterns of protein glycosylation, methylation, and other post-translational modifications of archaeal proteins are altered in response to environmental change. Indeed, adjusting post-translational modifications as a means to cope with environmental variability may also hold true beyond the Archaea.


Assuntos
Adaptação Fisiológica/fisiologia , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Meio Ambiente , Processamento de Proteína Pós-Traducional/fisiologia , Sequência de Aminoácidos , Glicosilação , Metilação , Fosforilação/fisiologia
7.
Glycobiology ; 31(12): 1645-1654, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34314490

RESUMO

Although Halobacterium salinarum provided the first example of N-glycosylation outside the Eukarya, much regarding such post-translational modification in this halophilic archaea remains either unclear or unknown. The composition of an N-linked glycan decorating both the S-layer glycoprotein and archaellins offers one such example. Originally described some 40 years ago, reports from that time on have presented conflicted findings regarding the composition of this glycan, as well as differences between the protein-bound glycan and that version of the glycan attached to the lipid upon which it is assembled. To clarify these points, liquid chromatography-electrospray ionization mass spectrometry was employed here to revisit the composition of this glycan both when attached to selected asparagine residues of target proteins and when bound to the lipid dolichol phosphate upon which the glycan is assembled. Such efforts revealed the N-linked glycan as corresponding to a tetrasaccharide comprising a hexose, a sulfated hexuronic acid, a hexuronic acid and a second sulfated hexuronic acid. When attached to dolichol phosphate but not to proteins, the same tetrasaccharide is methylated on the final sugar. Moreover, in the absence of the oligosaccharyltransferase AglB, there is an accumulation of the dolichol phosphate-linked methylated and disulfated tetrasaccharide. Knowing the composition of this glycan at both the lipid- and protein-bound stages, together with the availability of gene deletion approaches for manipulating Hbt. salinarum, will allow delineation of the N-glycosylation pathway in this organism.


Assuntos
Fosfatos de Dolicol , Haloferax volcanii , Fosfatos de Dolicol/química , Fosfatos de Dolicol/metabolismo , Dolicóis , Glicoproteínas/metabolismo , Glicosilação , Halobacterium salinarum/metabolismo , Haloferax volcanii/química , Fosfatos/metabolismo , Espectrometria de Massas por Ionização por Electrospray
8.
Mol Microbiol ; 114(5): 735-741, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32633872

RESUMO

Genome analysis points to N-glycosylation as being an almost universal posttranslational modification in Archaea. Although such predictions have been confirmed in only a limited number of species, such studies are making it increasingly clear that the N-linked glycans which decorate archaeal glycoproteins present diversity in terms of both glycan composition and architecture far beyond what is seen in the other two domains of life. In addition to continuing to decipher pathways of N-glycosylation, recent efforts have revealed how Archaea exploit this variability in novel roles. As well as encouraging glycoprotein synthesis, folding and assembly into properly functioning higher ordered complexes, N-glycosylation also provides Archaea with a strategy to cope with changing environments. Archaea can, moreover, exploit the apparent species-specific nature of N-glycosylation for selectivity in mating, and hence, to maintain species boundaries, and in other events where cell-selective interactions are required. At the same time, addressing components of N-glycosylation pathways across archaeal phylogeny offers support for the concept of an archaeal origin for eukaryotes. In this MicroReview, these and other recent discoveries related to N-glycosylation in Archaea are considered.


Assuntos
Archaea/metabolismo , Glicosilação , Polissacarídeos/metabolismo , Proteínas Arqueais/metabolismo , Evolução Biológica , Evolução Molecular , Genes Arqueais/genética , Glicoproteínas/metabolismo , Polissacarídeos/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia
9.
Mol Microbiol ; 114(5): 762-774, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32706435

RESUMO

Like both eukaryotes and bacteria, archaea can decorate proteins with N- and O-linked glycans. Whereas pathways and roles of N-glycosylation have been studied in several model archaeal organisms, little is known of O-glycosylation. To explore commonalities and variations of these two versions of glycosylation, we used Haloarcula hispanica as a model. Our previous work showed that H. hispanica S-layer glycoproteins are modified by an N-linked glucose-α-(1, 2)-[sulfoquinovosamine-ß-(1, 6)-]galactose trisaccharide and an O-linked glucose-α-(1, 4)-galactose disaccharide. Here, we found that H. hispanica membrane contains C60 dolichol phosphate (DolP) as a lipid carrier for glycosylation. As revealed by bioinformatics, gene deletion and phenotype analysis, gene HAH_1571, renamed agl22, encodes a predicted glucosyltransferase that transfers glucose from glucose-DolP onto galactose-DolP to form the glucose-α-(1, 4)-galactose-DolP precursor of the N-glycosylation. Gene HAH_2016, renamed agl23, encodes a putative flippase-associated protein responsible for flipping of hexose-DolPs across the membrane to face the exterior. Our results also suggested that the synthesis of the N- and O-linked glycans onto target protein occurs on the outer surface of the cell using hexose-DolPs as sugar donors. Deletion mutant showed that N- and O-glycosylation are required for growth in the defined medium mimicking the natural habitat of H. hispanica.


Assuntos
Haloarcula/genética , Haloarcula/metabolismo , Polissacarídeos/metabolismo , Proteínas Arqueais/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Lipídeos/fisiologia , Glicoproteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional
10.
Nucleic Acids Res ; 47(16): 8860-8873, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31310308

RESUMO

Interactions between proteins and DNA are crucial for all biological systems. Many studies have shown the dependence of protein-DNA interactions on the surrounding salt concentration. How these interactions are maintained in the hypersaline environments that halophiles inhabit remains puzzling. Towards solving this enigma, we identified the DNA motif recognized by the Halobactrium salinarum ROS-dependent transcription factor (hsRosR), determined the structure of several hsRosR-DNA complexes and investigated the DNA-binding process under extreme high-salt conditions. The picture that emerges from this work contributes to our understanding of the principles underlying the interplay between electrostatic interactions and salt-mediated protein-DNA interactions in an ionic environment characterized by molar salt concentrations.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Halobacterium salinarum/genética , Cloreto de Potássio/química , Tolerância ao Sal/genética , Fatores de Transcrição/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Arqueal/genética , DNA Arqueal/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Halobacterium salinarum/metabolismo , Haloferax/genética , Haloferax/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Cloreto de Potássio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Mol Phylogenet Evol ; 153: 106951, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32889138

RESUMO

Various biological markers in members of the TACK and Asgard archaeal super-phyla show Eukarya-like traits. These include the oligosaccharyltransferase, responsible for transferring glycans from the lipid carrier upon which they are assembled onto selected asparagine residues of target proteins during N-glycosylation. In Archaea, oligosaccharyltransferase activity is catalyzed by AglB. To gain deeper insight into AglB and N-glycosylation across archaeal phylogeny, bioinformatics approaches were employed to address variability in AglB sequence motifs involved in enzyme activity, construct a phylogenetic tree based on AglB sequences, search for archaeal homologues of non-catalytic subunits of the multimeric eukaryal oligosaccharyltransferase complex and predict the presence of aglB-based clusters of glycosylation-related genes in the Euryarchaeota and the DPANN, TACK and Asgard super-phyla. In addition, site-directed mutagenesis and mass spectrometry were employed to study the natural variability in the WWDXG motif central to oligosaccharyltransferase activity seen in archaeal AglB. The results clearly distinguish AglB from members of the DPANN super-phylum and the Euryarchaeota from the same enzyme in members of the TACK and Asgard super-phyla, which showed considerable similarity to its eukaryal homologue Stt3. The results thus support the evolutionary proximity of Eukarya and the TACK and Asgard archaea.


Assuntos
Archaea/classificação , Archaea/enzimologia , Proteínas Arqueais/genética , Hexosiltransferases/genética , Proteínas de Membrana/genética , Filogenia , Archaea/genética , Glicosilação
12.
J Struct Biol ; 204(2): 191-198, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30110657

RESUMO

Protein-DNA interactions are highly dependent on salt concentration. To gain insight into how such interactions are maintained in the highly saline cytoplasm of halophilic archaea, we determined the 3-D structure of VNG0258H/RosR, the first haloarchaeal DNA-binding protein from the extreme halophilic archaeon Halobactrium salinarum. It is a dimeric winged-helix-turn-helix (wHTH) protein with unique features due to adaptation to the halophilic environment. As ions are major players in DNA binding processes, particularly in halophilic environments, we investigated the solution structure of the ionic envelope and located anions in the first shell around the protein in the crystal using anomalous scattering. Anions that were found to be tightly bound to residues in the positively charged DNA-binding site would probably be released upon DNA binding and will thus make significant contribution to the driving force of the binding process. Unexpectedly, ions were also found in a buried internal cavity connected to the external medium by a tunnel. Our structure lays a solid groundwork for future structural, computational and biochemical studies on complexes of the protein with cognate DNA sequences, with implications to protein-DNA interactions in hyper-saline environments.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Halobacterium salinarum , Dados de Sequência Molecular , Estrutura Secundária de Proteína
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(6): 589-599, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330764

RESUMO

N-glycosylation, a post-translational modification whereby glycans are covalently linked to select Asn residues of target proteins, occurs in all three domains of life. Across evolution, the N-linked glycans are initially assembled on phosphorylated cytoplasmically-oriented polyisoprenoids, with polyprenol (mainly C55 undecaprenol) fulfilling this role in Bacteria and dolichol assuming this function in Eukarya and Archaea. The eukaryal and archaeal versions of dolichol can, however, be distinguished on the basis of their length, degree of saturation and by other traits. As is true for many facets of their biology, Archaea, best known in their capacity as extremophiles, present unique approaches for synthesizing phosphodolichols. At the same time, general insight into the assembly and processing of glycan-bearing phosphodolichols has come from studies of the archaeal enzymes responsible. In this review, these and other aspects of archaeal phosphodolichol biology are addressed.


Assuntos
Archaea/metabolismo , Fosfatos de Dolicol/metabolismo , Archaea/genética , Carboidratos/genética , Fosfatos de Dolicol/genética , Glicosilação
14.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28039139

RESUMO

N-Glycosylation, the covalent linkage of glycans to select Asn residues of target proteins, is an almost universal posttranslational modification in archaea. However, whereas roles for N-glycosylation have been defined in eukarya and bacteria, the function of archaeal N-glycosylation remains unclear. Here, the impact of perturbed N-glycosylation on the structure and physiology of the haloarchaeon Haloferax volcanii was considered. Cryo-electron microscopy was used to examine right-side-out membrane vesicles prepared from cells of a parent strain and from strains lacking genes encoding glycosyltransferases involved in assembling the N-linked pentasaccharide decorating the surface layer (S-layer) glycoprotein, the sole component of the S-layer surrounding H. volcanii cells. Whereas a regularly repeating S-layer covered the entire surface of vesicles prepared from parent strain cells, vesicles from the mutant cells were only partially covered. To determine whether such N-glycosylation-related effects on S-layer assembly also affected cell function, the secretion of a reporter protein was addressed in the parent and N-glycosylation mutant strains. Compromised S-layer glycoprotein N-glycosylation resulted in impaired transfer of the reporter past the S-layer and into the growth medium. Finally, an assessment of S-layer glycoprotein susceptibility to added proteases in the mutants revealed that in cells lacking AglD, which is involved in adding the final pentasaccharide sugar, a distinct S-layer glycoprotein conformation was assumed in which the N-terminal region was readily degraded. Perturbed N-glycosylation thus affects S-layer glycoprotein folding. These findings suggest that H. volcanii could adapt to changes in its surroundings by modulating N-glycosylation so as to affect S-layer architecture and function.IMPORTANCE Long held to be a process unique to eukaryotes, it is now accepted that bacteria and archaea also perform N-glycosylation, namely, the covalent attachment of sugars to select asparagine residues of target proteins. Yet, while information on the importance of N-glycosylation in eukaryotes and bacteria is available, the role of this posttranslational modification in archaea remains unclear. Here, insight into the purpose of archaeal N-glycosylation was gained by addressing the surface layer (S-layer) surrounding cells of the halophilic species Haloferax volcanii Relying on mutant strains defective in N-glycosylation, such efforts revealed that compromised N-glycosylation affected S-layer integrity and the transfer of a secreted reporter protein across the S-layer into the growth medium, as well as the conformation of the S-layer glycoprotein, the sole component of the S-layer. Thus, by modifying N-glycosylation, H. volcanii cells can change how they interact with their surroundings.


Assuntos
Glicosiltransferases/genética , Haloferax volcanii/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligossacarídeos/metabolismo , Glicosilação , Haloferax volcanii/genética , Conformação Proteica
15.
Bioconjug Chem ; 28(9): 2461-2470, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28809486

RESUMO

N-glycosylation, the covalent attachment of glycans to select protein target Asn residues, is a post-translational modification performed by all three domains of life. In the halophilic archaea Haloferax volcanii, in which understanding of this universal protein-processing event is relatively well-advanced, genes encoding the components of the archaeal glycosylation (Agl) pathway responsible for the assembly and attachment of an N-linked pentasaccharide have been identified. As elsewhere, the N-linked glycan is assembled on phosphodolichol carriers before transfer to target Asn residues. However, as little is presently known of the Hfx. volcanii Agl pathway at the protein level, the seemingly unique ability of Archaea to use dolichol phosphate (DolP) as the glycan lipid carrier, rather than dolichol pyrophosphate used by eukaryotes, remains poorly understood. With this in mind, a chemoenzymatic approach was taken to biochemically study AglG, one of the five glycosyltransferases of the pathway. Accordingly, a novel regio- and stereoselective reduction of naturally isolated polyprenol gave facile access to S-dolichol via asymmetric transfer hydrogenation under very mild conditions. This compound was used to generate glucose-charged DolP, a precursor of the N-linked pentasaccharide, as well as DolP-glucose-glucuronic acid and DolP-glucuronic acid. AglG, purified from Hfx. volcanii membranes in hypersaline conditions, like those encountered in situ, was subsequently combined with uridine diphosphate (UDP)-glucuronic acid and DolP-glucose to yield DolP-glucose-glucuronic acid. The in vitro system for the study of AglG activity developed here represents the first such tool for studying halophilic glycosyltransferases and will allow for a detailed understanding of archaeal N-glycosylation.


Assuntos
Proteínas Arqueais/metabolismo , Fosfatos de Dolicol/metabolismo , Glicosiltransferases/metabolismo , Haloferax volcanii/metabolismo , Polissacarídeos/metabolismo , Glicosilação , Oligossacarídeos/metabolismo , Processamento de Proteína Pós-Traducional
16.
Glycobiology ; 26(7): 745-756, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26863921

RESUMO

N-Glycosylation is a post-translational modification performed in all three domains of life. In the halophilic archaea Haloferax volcanii, glycoproteins such as the S-layer glycoprotein are modified by an N-linked pentasaccharide assembled by a series of Agl (archaeal glycosylation) proteins. In the present study, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy were used to define the structure of this glycan attached to at least four of the seven putative S-layer glycoprotein N-glycosylation sites, namely Asn-13, Asn-83, Asn-274 and Asn-279. Such approaches detected a trisaccharide corresponding to glucuronic acid (GlcA)-ß1,4-GlcA-ß1,4-glucose-ß1-Asn, a tetrasaccharide corresponding to methyl-O-4-GlcA-ß-1,4-galacturonic acid-α1,4-GlcA-ß1,4-glucose-ß1-Asn, and a pentasaccharide corresponding to hexose-1,2-[methyl-O-4-]GlcA-ß-1,4-galacturonic acid-α1,4-GlcA-ß1,4-glucose-ß1-Asn, with previous MS and radiolabeling experiments showing the hexose at the non-reducing end of the pentasaccharide to be mannose. The present analysis thus corrects the earlier assignment of the penultimate sugar as a methyl ester of a hexuronic acid, instead revealing this sugar to be a methylated GlcA. The assignments made here are in good agreement with what was already known of the Hfx. volcanii N-glycosylation pathway from previous genetic and biochemical efforts while providing new insight into the process.


Assuntos
Haloferax volcanii/química , Glicoproteínas de Membrana/química , Oligossacarídeos/química , Conformação Proteica , Glicosilação , Manose/química , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular
17.
Biochim Biophys Acta ; 1828(3): 938-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23201543

RESUMO

The S-layer glycoprotein is the sole component of the protein shell surrounding Haloferax volcanii cells. The deduced amino acid sequence of the S-layer glycoprotein predicts the presence of a C-terminal membrane-spanning domain. However, several earlier observations, including the ability of EDTA to selectively solubilize the protein, are inconsistent with the presence of a trans-membrane sequence. In the present report, sequential solubilization of the S-layer glycoprotein by EDTA and then with detergent revealed the existence of two distinct populations of the S-layer glycoprotein. Whereas both S-layer glycoprotein populations underwent signal peptide cleavage and N-glycosylation, base hydrolysis followed by mass spectrometry revealed that a lipid, likely archaetidic acid, modified only the EDTA-solubilized version of the protein. These observations are consistent with the S-layer glycoprotein being initially synthesized as an integral membrane protein and subsequently undergoing a processing event in which the extracellular portion of the protein is separated from the membrane-spanning domain and transferred to a waiting lipid moiety.


Assuntos
Glicoproteínas/química , Lipídeos/química , Glicoproteínas de Membrana/química , Proteínas Arqueais/metabolismo , Biofísica/métodos , Cromatografia Líquida/métodos , Ácido Edético/química , Glicosilação , Haloferax volcanii/metabolismo , Hidrólise , Espectrometria de Massas/métodos , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray/métodos
18.
Appl Environ Microbiol ; 80(2): 486-96, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212570

RESUMO

Across evolution, N-glycosylation involves oligosaccharyltransferases that transfer lipid-linked glycans to selected Asn residues of target proteins. While these enzymes catalyze similar reactions in each domain, differences exist in terms of the chemical composition, length and degree of phosphorylation of the lipid glycan carrier, the sugar linking the glycan to the lipid carrier, and the composition and structure of the transferred glycan. To gain insight into how oligosaccharyltransferases cope with such substrate diversity, the present study analyzed the archaeal oligosaccharyltransferase AglB from four haloarchaeal species. Accordingly, it was shown that despite processing distinct lipid-linked glycans in their native hosts, AglB from Haloarcula marismortui, Halobacterium salinarum, and Haloferax mediterranei could readily replace their counterpart from Haloferax volcanii when introduced into Hfx. volcanii cells deleted of aglB. As the four enzymes show significant sequence and apparently structural homology, it appears that the functional similarity of the four AglB proteins reflects the relaxed substrate specificity of these enzymes. Such demonstration of AglB substrate promiscuity is important not only for better understanding of N-glycosylation in Archaea and elsewhere but also for efforts aimed at transforming Hfx. volcanii into a glycoengineering platform.


Assuntos
Proteínas Arqueais/metabolismo , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Dolicóis/química , Dolicóis/metabolismo , Glicosilação , Haloarcula marismortui/metabolismo , Halobacterium salinarum/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Hexosiltransferases/genética , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Conformação Proteica , Especificidade por Substrato
19.
J Mol Biol ; 436(6): 168462, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301806

RESUMO

Protein degradation, which occurs in all cells, is essential for proper cellular function by regulating many cellular processes, destroying misfolded proteins, and providing protein building blocks under starvation conditions. As proteolysis is a destructive process, it is carried out by tightly regulated enzymes that evolved to interact with their protein substrates in a highly controlled and selective manner. The agents of protein degradation include proteasomes, AAA+ proteolytic machines found in all kingdoms of life. The bacterial proteasome specifically recognizes proteins conjugated to a protein tag termed Pup, with the proteasome regulatory particle, a ring-shaped hexamer termed Mpa in mycobacteria, being responsible for Pup recognition. Once Pup binds Mpa, Pup enters the central pore, where the Mpa AAA+ domain links ATP hydrolysis to the translocation of Pup and its conjugated substrate into a barrel-shaped proteasome core particle, where peptide bond cleavage occurs. As Pup traverses the Mpa pore en route to the AAA+ domain, it passes the inter-domain. Although the inter-domain is conserved in all proteasomes, its role in substrate processing remained unclear. We report here that the Mpa inter-domain promotes Pup binding via electrostatic interactions between conserved charged inter-domain pore loops and charged Pup residues. As such, the inter-domain serves as a gatekeeper that selects for Pup binding, thus facilitating tag interaction with the downstream AAA+ domain. Our findings thus reveal the existence of an additional level of substrate binding regulation in an AAA+ protease.


Assuntos
Proteínas de Bactérias , Complexo de Endopeptidases do Proteassoma , Proteólise , Proteínas de Bactérias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo , Mycobacterium smegmatis
20.
iScience ; 27(3): 109108, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375228

RESUMO

Many bacterial pathogens employ the type III secretion system (T3SS), a specialized complex that transports effector proteins that manipulate various cellular processes. The T3SS forms a translocon pore within the host-cell membrane consisting of two secreted proteins that transition from a soluble state into a transmembrane complex. Still, the exact sequence of events leading to the formation of a membranous functional pore remains uncertain. Here, we utilized the translocon proteins of enteropathogenic E. coli (EPEC) to investigate the sequence of those steps leading to translocon assembly, including self-oligomerization, hetero-oligomerization, interprotein interaction, and membrane insertion. We found that in EPEC, EspD (SctE) plays a dominant role in pore formation as it assembles into an oligomeric state, regardless of pH, membrane contact, or the presence of EspB (SctB). Subsequently, EspB subunits integrate into EspD homo-oligomers to create EspB-EspD hetero-oligomers that adopt a transmembrane orientation to create a functional pore complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA