Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ecotoxicol Environ Saf ; 266: 115570, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844410

RESUMO

Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.


Assuntos
Glucocorticoides , Psoríase , Humanos , Animais , Camundongos , Glucocorticoides/toxicidade , Glucocorticoides/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor 7 Toll-Like/metabolismo , Transcriptoma , Psoríase/patologia , Imiquimode/toxicidade , Terapia de Imunossupressão , Biomarcadores/metabolismo , Pele/metabolismo
2.
Ecotoxicol Environ Saf ; 250: 114514, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608563

RESUMO

Endocrine disruptors (EDs), capable of modulating the sex hormone system of an organism, can exert long-lasting negative effects on reproduction in both humans and the environment. For these reasons, the properties of EDs prevent a substance from being approved for marketing. However, regulatory testing to evaluate endocrine disruption is time-consuming, costly, and animal-intensive. Here, we combined sublethal zebrafish embryo assays with transcriptomics and proteomics for well-characterized endocrine disrupting reference compounds to identify predictive biomarkers for sexual endocrine disruption in this model. Using RNA and protein gene expression fingerprints from two different sublethal exposure concentrations, we identified specific signatures and impaired biological processes induced by ethinylestradiol, tamoxifen, methyltestosterone and flutamide 96 h post fertilization (hpf). Our study promotes vtg1 as well as cyp19a1b, fam20cl, lhb, lpin1, nr1d1, fbp1b, and agxtb as promising biomarker candidates for identifying and differentiating estrogen and androgen receptor agonism and antagonism. Evaluation of these biomarkers for pre-regulatory zebrafish embryo-based bioassays will help identify endocrine disrupting hazards of compounds at the molecular level. Such approaches additionally provide weight-of-evidence for the identification of putative EDs and may contribute significantly to a reduction in animal testing in higher tier studies.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Estrogênios/metabolismo , Expressão Gênica , Fosfatidato Fosfatase/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
3.
Environ Sci Technol ; 56(16): 11504-11515, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35926083

RESUMO

In the environmental risk assessment of substances, toxicity to aquatic plants is evaluated using, among other methods, the 7 dayLemna sp. growth inhibition test following the OECD TG 221. So far, the test is not applicable for short-term screening of toxicity, nor does it allow evaluation of toxic modes of action (MoA). The latter is also complicated by the lack of knowledge of gene functions in the test species. Using ecotoxicogenomics, we developed a time-shortened 3 day assay inLemna minor which allows discrimination of ecotoxic MoA. By examining the changes in gene expression induced by low effect concentrations of the pharmaceutical atorvastatin and the herbicide bentazon at the transcriptome and proteome levels, we were able to identify candidate biomarkers for the respective MoA. We developed a homology-based functional annotation pipeline for the reference genome ofL. minor, which allowed overrepresentation analysis of the gene ontologies affected by both test compounds. Genes affected by atorvastatin mainly influenced lipid synthesis and metabolism, whereas the bentazon-responsive genes were mainly involved in light response. Our approach is therefore less time-consuming but sensitive and allows assessment of MoA in L. minor. Using this shortened assay, investigation of expression changes of the identified candidate biomarkers may allow the development of MoA-specific screening approaches in the future.


Assuntos
Araceae , Herbicidas , Poluentes Químicos da Água , Araceae/metabolismo , Atorvastatina/metabolismo , Atorvastatina/farmacologia , Biomarcadores , Herbicidas/metabolismo , Herbicidas/toxicidade , Toxicogenética , Poluentes Químicos da Água/metabolismo
4.
Ecotoxicol Environ Saf ; 233: 113346, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228030

RESUMO

In the ecotoxicological hazard assessment of chemicals, the detection of immunotoxicity is currently neglected. This is mainly due to the complexity of the immune system and the consequent lack of standardized procedures and markers for the comprehensive assessment of immunotoxic modes of action. In this study, we present a new approach applying transcriptome profiling to an immune challenge with a mixture of pathogen-associated molecular patterns (PAMPs) in zebrafish embryos, analyzing differential gene expression during acute infection with and without prior exposure to the immunosuppressive drug clobetasol propionate (CP). While PAMP injection itself triggered biological processes associated with immune activation, some of these genes were more differentially expressed upon prior exposure to CP than by immune induction alone, whereas others showed weaker or no differential regulation in response to the PAMP stimulus. All of these genes responding differently to PAMP after prior CP exposure showed additivity of PAMP- and CP-induced effects, indicating independent regulatory mechanisms. The transcriptomic profiles suggest that CP impaired innate immune induction by attenuating the response of genes involved in antigen processing, TLR signaling, NF-КB signaling, and complement activation. We propose this approach as a powerful method for detecting gene biomarkers for immunosuppressive modes of action, as it was able to identify alternatively regulated processes and pathways in a sublethal, acute infection zebrafish embryo model. This allowed to define biomarker candidates for immune-mediated effects and to comprehensively characterize immunosuppression. Ultimately, this work contributes to the development of molecular biomarker-based environmental hazard assessment of chemicals in the future.


Assuntos
Clobetasol , Peixe-Zebra , Animais , Clobetasol/metabolismo , Perfilação da Expressão Gênica , Terapia de Imunossupressão , Transcriptoma , Peixe-Zebra/metabolismo
5.
Nucleic Acids Res ; 42(8): 4962-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24623795

RESUMO

Active positive transcription elongation factor b (P-TEFb) is essential for cellular and human immunodeficiency virus type 1 (HIV-1) transcription elongation. CTIP2 represses P-TEFb activity in a complex containing 7SK RNA and HEXIM1. Recently, the inactive 7SK/P-TEFb small nuclear RNP (snRNP) has been detected at the HIV-1 core promoter as well as at the promoters of cellular genes, but a recruiting mechanism still remains unknown to date. Here we show global synergy between CTIP2 and the 7SK-binding chromatin master-regulator HMGA1 in terms of P-TEFb-dependent endogenous and HIV-1 gene expression regulation. While CTIP2 and HMGA1 concordingly repress the expression of cellular 7SK-dependent P-TEFb targets, the simultaneous knock-down of CTIP2 and HMGA1 also results in a boost in Tat-dependent and independent HIV-1 promoter activity. Chromatin immunoprecipitation experiments reveal a significant loss of CTIP2/7SK/P-TEFb snRNP recruitment to cellular gene promoters and the HIV-1 promoter on HMGA1 knock-down. Our findings not only provide insights into a recruiting mechanism for the inactive 7SK/P-TEFb snRNP, but may also contribute to a better understanding of viral latency.


Assuntos
HIV-1/genética , Proteína HMGA1a/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos
6.
Proc Natl Acad Sci U S A ; 110(31): 12655-60, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23852730

RESUMO

The positive transcription elongation factor b (P-TEFb) is involved in physiological and pathological events including inflammation, cancer, AIDS, and cardiac hypertrophy. The balance between its active and inactive form is tightly controlled to ensure cellular integrity. We report that the transcriptional repressor CTIP2 is a major modulator of P-TEFb activity. CTIP2 copurifies and interacts with an inactive P-TEFb complex containing the 7SK snRNA and HEXIM1. CTIP2 associates directly with HEXIM1 and, via the loop 2 of the 7SK snRNA, with P-TEFb. In this nucleoprotein complex, CTIP2 significantly represses the Cdk9 kinase activity of P-TEFb. Accordingly, we show that CTIP2 inhibits large sets of P-TEFb- and 7SK snRNA-sensitive genes. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Overexpression of the ß-myosin heavy chain protein contributes to the pathological cardiac wall thickening. The inactive P-TEFb complex associates with CTIP2 at the MYH7 gene promoter to repress its activity. Taken together, our results strongly suggest that CTIP2 controls P-TEFb function in physiological and pathological conditions.


Assuntos
Cardiomegalia/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Estrutura Secundária de Proteína , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
7.
Sci Total Environ ; 924: 171722, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490423

RESUMO

In environmental risk assessment of substances, the 14-day growth inhibition test following OECD test guideline 239 is employed to assess toxicity in the macrophyte Myriophyllum spicatum. Currently, this test evaluates physiological parameters and does not allow the identification of the mode of action (MoA) by which adverse effects are induced. However, for an improved ecotoxicity assessment of substances, knowledge about their ecotoxic MoA in non-target organisms is required. It has previously been suggested that the identification of gene expression changes can contribute to MoA identification. Therefore, we developed a shortened three-day assay for M. spicatum including the transcriptomic assessment of global gene expression changes and applied this assay to two model substances, the herbicide and photosynthesis inhibitor bentazone and the pharmaceutical and HMG-CoA reductase inhibitor atorvastatin. Due to the lack of a reference genome for M. spicatum we performed a de novo transcriptome assembly followed by a functional annotation to use the toxicogenomic results for MoA discrimination. The gene expression changes induced by low effect concentrations of these substances were used to identify differentially expressed genes (DEGs) and impaired biological functions for the respective MoA. We observed both concentration-dependent numbers and differentiated patterns of DEGs for both substances. While bentazone impaired genes involved in the response to reactive oxygen species as well as light response, and also genes involved in developmental processes, atorvastatin exposure led to a differential regulation of genes related to brassinosteroid response as well as potential metabolic shifts between the mevalonate and methyl erythritol 4-phosphate pathway. Based on these responses, we identified biomarker candidates for the assessment of MoA in M. spicatum. Utilizing the shortened assay developed in this study, the investigation of the identified biomarker candidates may contribute to the development of future MoA-specific screening approaches in the ecotoxicological hazard prediction using aquatic non-standard model organisms.


Assuntos
Benzotiadiazinas , Magnoliopsida , Saxifragales , Poluentes Químicos da Água , Atorvastatina/farmacologia , Toxicogenética , Magnoliopsida/fisiologia , Biomarcadores , Poluentes Químicos da Água/toxicidade
8.
Environ Toxicol Pharmacol ; 105: 104348, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135202

RESUMO

In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.


Assuntos
Alanina/análogos & derivados , Dioxolanos , Fungicidas Industriais , Perciformes , Triazóis , Animais , Peixe-Zebra/metabolismo , Transcriptoma , Fungicidas Industriais/toxicidade , Proteômica , Perfilação da Expressão Gênica , Perciformes/genética
9.
RNA Biol ; 10(3): 436-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23392246

RESUMO

The transactivating response element (TAR) of human immunodeficiency virus 1 (HIV-1) is essential for promoter transactivation by the viral transactivator of transcription (Tat). The Tat-TAR interaction thereby recruits active positive transcription elongation factor b (P-TEFb) from its inactive, 7SK/HEXIM1-bound form, leading to efficient viral transcription. Here, we show that the 7SK RNA-associating chromatin regulator HMGA1 can specifically bind to the HIV-1 TAR element and that 7SK RNA can thereby compete with TAR. The HMGA1-binding interface of TAR is located within the binding site for Tat and other cellular activators, and we further provide evidence for competition between HMGA1 and Tat for TAR-binding. HMGA1 negatively influences the expression of a HIV-1 promoter-driven reporter in a TAR-dependent manner, both in the presence and in the absence of Tat. The overexpression of the HMGA1-binding substructure of 7SK RNA results in a TAR-dependent gain of HIV-1 promoter activity similar to the effect of the shRNA-mediated knockdown of HMGA1. Our results support a model in which the HMGA1/TAR interaction prevents the binding of transcription-activating cellular co-factors and Tat, subsequently leading to reduced HIV-1 transcription.


Assuntos
Repetição Terminal Longa de HIV , HIV-1/genética , Proteína HMGA1a/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Proteína HMGA1a/genética , Células HeLa , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Viral/genética , RNA Viral/metabolismo , Transcrição Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
10.
Nucleic Acids Res ; 39(6): 2057-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21087998

RESUMO

Non-coding (nc) RNAs are increasingly recognized to play important regulatory roles in eukaryotic gene expression. The highly abundant and essential 7SK ncRNA has been shown to negatively regulate RNA Polymerase II transcription by inactivating the positive transcription elongation factor b (P-TEFb) in cellular and Tat-dependent HIV transcription. Here, we identify a more general, P-TEFb-independent role of 7SK RNA in directly affecting the function of the architectural transcription factor and chromatin regulator HMGA1. An important regulatory role of 7SK RNA in HMGA1-dependent cell differentiation and proliferation regulation is uncovered with the identification of over 1500 7SK-responsive HMGA1 target genes. Elevated HMGA1 expression is observed in nearly every type of cancer making the use of a 7SK substructure in the inhibition of HMGA1 activity, as pioneered here, potentially useful in therapy. The 7SK-HMGA1 interaction not only adds an essential facet to the comprehension of transcriptional plasticity at the coupling of initiation and elongation, but also might provide a molecular link between HIV reprogramming of cellular gene expression-associated oncogenesis.


Assuntos
Regulação da Expressão Gênica , Proteína HMGA1a/metabolismo , RNA Nuclear Pequeno/metabolismo , Motivos AT-Hook , Sequência de Bases , Sítios de Ligação , Proposta de Concorrência , DNA/metabolismo , Células HEK293 , Proteína HMGA1a/química , Proteína HMGA1a/isolamento & purificação , Células HeLa , Humanos , Dados de Sequência Molecular , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/isolamento & purificação , Transcrição Gênica
11.
Chemosphere ; 291(Pt 1): 132746, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34748799

RESUMO

For specific primary modes of action (MoA) in environmental non-target organisms, EU legislation restricts the usage of active substances of pesticides or biocides. Corresponding regulatory hazard assessments are costly, time consuming and require large numbers of non-human animal studies. Currently, predictive toxicology of development compounds relies on their chemical structure and provides little insights into toxicity mechanisms that precede adverse effects. Using the zebrafish embryo model, we characterized transcriptomic responses to a range of sublethal concentrations of six nerve- and muscle-targeting insecticides with different MoA (abamectin, carbaryl, chlorpyrifos, fipronil, imidacloprid & methoxychlor). Our aim was to identify affected biological processes and suitable biomarker candidates for MoA-specific signatures. Abamectin showed the most divergent signature among the tested insecticides, linked to lipid metabolic processes. Differentially expressed genes (DEGs) after imidacloprid exposure were primarily associated with immune system and inflammation. In total, 222 early responsive genes to either MoA were identified, many related to three major processes: (1) cardiac muscle cell development and functioning (tcap, desma, bag3, hspb1, hspb8, flnca, myoz3a, mybpc2b, actc2, tnnt2c), (2) oxygen transport and hypoxic stress (alas2, hbbe1.1, hbbe1.3, hbbe2, hbae3, igfbp1a, hif1al) and (3) neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). The thyroidal function related gene dio3b was upregulated by chlorpyrifos and downregulated by higher abamectin concentrations. Important regulatory genes for cardiac muscle (tcap) and forebrain development (npas4a) were the most frequently ifferentially expressed across all insecticide treatments. We consider the identified gene sets as useful early warning biomarker candidates, i.e. for developmental toxicity targeting heart and brain in aquatic vertebrates. Our findings provide a better understanding about early molecular events in response to the analyzed MoA. Perceptively, this promotes the development for sensitive and informative biomarker-based in vitro assays for toxicological MoA prediction and AOP refinement, without the suffering of adult fish.


Assuntos
Inseticidas , Poluentes Químicos da Água , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Inseticidas/toxicidade , Músculos , Toxicogenética , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
BMC Biochem ; 12: 4, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21284855

RESUMO

BACKGROUND: The human thymine-DNA glycosylase (TDG) plays a dual role in base excision repair of G:U/T mismatches and in transcription. Regulation of TDG activity by SUMO-1 conjugation was shown to act on both functions. Furthermore, TDG can interact with SUMO-1 in a non-covalent manner. RESULTS: Using NMR spectroscopy we have determined distinct conformational changes in TDG upon either covalent sumoylation on lysine 330 or intermolecular SUMO-1 binding through a unique SUMO-binding motif (SBM) localized in the C-terminal region of TDG. The non-covalent SUMO-1 binding induces a conformational change of the TDG amino-terminal regulatory domain (RD). Such conformational dynamics do not exist with covalent SUMO-1 attachment and could potentially play a broader role in the regulation of TDG functions for instance during transcription. Both covalent and non-covalent processes activate TDG G:U repair similarly. Surprisingly, despite a dissociation of the SBM/SUMO-1 complex in presence of a DNA substrate, SUMO-1 preserves its ability to stimulate TDG activity indicating that the non-covalent interactions are not directly involved in the regulation of TDG activity. SUMO-1 instead acts, as demonstrated here, indirectly by competing with the regulatory domain of TDG for DNA binding. CONCLUSIONS: SUMO-1 increases the enzymatic turnover of TDG by overcoming the product-inhibition of TDG on apurinic sites. The mechanism involves a competitive DNA binding activity of SUMO-1 towards the regulatory domain of TDG. This mechanism might be a general feature of SUMO-1 regulation of other DNA-bound factors such as transcription regulatory proteins.


Assuntos
Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Timina DNA Glicosilase/química , Timina DNA Glicosilase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , DNA/química , DNA/genética , DNA/metabolismo , Reparo do DNA , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Proteína SUMO-1/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Sumoilação , Timina DNA Glicosilase/genética
13.
RNA Biol ; 8(6): 1084-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21957495

RESUMO

7SK small-nuclear RNA has been shown to negatively regulate P-TEFb transcription elongation on the one hand and control HMGA1 transcription initiation and chromatin remodeling on the other. The non-coding 7SK RNA thereby directly interacts with both factors through different regions. While the loop 2 of the RNA specifically binds to the first HMGA1 A/T hook, thereby competing with DNA binding to the same domain, loops 1, 3 and 4 are involved in P-TEFb interaction. This raises the question of whether HMGA1 and P-TEFb cooperate during gene transcription. Using transcriptome profiling, we have identifed genes that are oppositely regulated by 7SK RNA over-expression versus shRNA mediated knock-down. Inhibition of P-TEFb by competitive expression of a dominant-negative Cdk9 protein leads to highly similar changes in global gene expression as the over-expression of 7SK RNA, confirming the importance of P-TEFb inhibition by 7SK RNA. Furthermore, we have similarly assembled genes affected concomitantly by HMGA1 over-expression. HMGA1 and P-TEFb, in the case of select target genes, show strong cooperation in transcriptional activation. Finally, we provide evidence for 7SK RNA complexes containing simultaneously HMGA1 and P-TEFb. 7SK RNA thus establishes gene-dependent plasticity between HMGA1 chromatin remodeling and transcription initiation and P-TEFb transcription elongation.


Assuntos
Regulação da Expressão Gênica , Proteína HMGA1a/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Nuclear Pequeno , Linhagem Celular , Montagem e Desmontagem da Cromatina , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Técnicas de Silenciamento de Genes , Proteína HMGA1a/genética , Humanos , Fator B de Elongação Transcricional Positiva/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Transcriptoma
14.
RNA Biol ; 8(1): 143-57, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21282977

RESUMO

The small nuclear 7SK RNA negatively controls transcription by inactivating positive transcription elongation factor b (P-TEFb) and is an integral component of Tat-dependent and independent HIV-1 transcription initiation complexes. 7SK RNA has recently been shown to also directly control HMGA1 transcription activity. HMGA1 is a master regulator of gene expression and its deregulation is associated with virtually any type of human cancer. The degree of HMGA1 over-expression thereby correlates with tumor malignancy and metastatic potential. 7SK snRNA directly interacts through its loop2 (7SK L2) with the first A/T-hook DNA binding motif of HMGA1. We have developed several 7SK L2 RNA chimera with the Epstein Barr Virus expressed RNA 2 (EBER2) to target HMGA1 function in transcription regulation. The efficiency of interfering with HMGA1 transcription activity by the chimeric 7SK L2-EBER2 fusions by large exceeds the efficiency of 7SK wild-type RNA due to the stronger EBER2 promoter activity. Furthermore, the 7SK L2-EBER2 chimera do not interfere with P-TEFb controlled transcription elongation or the formation of 7SK sn/hnRNPs. The comparison of the effects of wild-type 7SK RNA on cellular transcriptome dynamics with those induced by the two 7SK L2 mutants as well as the changes in gene expression following inhibition of HMGA1 allow the identification and characterization of HMGA1-dependent and independent effects of 7SK snRNA. We furthermore also present evidence for P-TEFb and HMGA1-independent 7SK RNA L2 regulatory activity.


Assuntos
Perfilação da Expressão Gênica , Proteína HMGA1a/metabolismo , RNA Nuclear Pequeno/genética , RNA Viral/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Chlorocebus aethiops , Clonagem Molecular , Regulação da Expressão Gênica , Genes Reguladores , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , RNA Nuclear Pequeno/metabolismo , RNA Viral/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , TATA Box , Transcrição Gênica , Transfecção
15.
Microorganisms ; 9(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683472

RESUMO

Bile salts such as cholate are steroid compounds from the digestive tracts of vertebrates, which enter the environment upon excretion, e.g., in manure. Environmental bacteria degrade bile salts aerobically via two pathway variants involving intermediates with Δ1,4- or Δ4,6-3-keto-structures of the steroid skeleton. Recent studies indicated that degradation of bile salts via Δ4,6-3-keto intermediates in Sphingobium sp. strain Chol11 proceeds via 9,10-seco cleavage of the steroid skeleton. For further elucidation, the presumptive product of this cleavage, 3,12ß-dihydroxy-9,10-seco-androsta-1,3,5(10),6-tetraene-9,17-dione (DHSATD), was provided to strain Chol11 in a co-culture approach with Pseudomonas stutzeri Chol1 and as purified substrate. Strain Chol11 converted DHSATD to the so far unknown compound 4-methyl-3-deoxy-1,9,12-trihydroxyestra-1,3,5(10)7-tetraene-6,17-dione (MDTETD), presumably in a side reaction involving an unusual ring closure. MDTETD was neither degraded by strains Chol1 and Chol11 nor in enrichment cultures. Functional transcriptome profiling of zebrafish embryos after exposure to MDTETD identified a significant overrepresentation of genes linked to hormone responses. In both pathway variants, steroid degradation intermediates transiently accumulate in supernatants of laboratory cultures. Soil slurry experiments indicated that bacteria using both pathway variants were active and also released their respective intermediates into the environment. This instance could enable the formation of recalcitrant steroid metabolites by interspecies cross-feeding in agricultural soils.

16.
Aquat Toxicol ; 238: 105927, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34340001

RESUMO

Active substances of pesticides, biocides or pharmaceuticals can induce adverse side effects in the aquatic ecosystem, necessitating environmental hazard and risk assessment prior to substance registration. The freshwater crustacean Daphnia magna is a model organism for acute and chronic toxicity assessment representing aquatic invertebrates. However, standardized tests involving daphnia are restricted to the endpoints immobility and reproduction and thus provide only limited insights into the underlying modes-of-action. Here, we applied transcriptome profiling to a modified D. magna Acute Immobilization test to analyze and compare gene expression profiles induced by the GABA-gated chloride channel blocker fipronil and the nicotinic acetylcholine receptor (nAChR) agonist imidacloprid. Daphnids were expose to two low effect concentrations of each substance followed by RNA sequencing and functional classification of affected gene ontologies and pathways. For both insecticides, we observed a concentration-dependent increase in the number of differentially expressed genes, whose expression changes were highly significantly positively correlated when comparing both test concentrations. These gene expression fingerprints showed virtually no overlap between the test substances and they related well to previous data of diazepam and carbaryl, two substances targeting similar molecular key events. While, based on our results, fipronil predominantly interfered with molecular functions involved in ATPase-coupled transmembrane transport and transcription regulation, imidacloprid primarily affected oxidase and oxidoreductase activity. These findings provide evidence that systems biology approaches can be utilized to identify and differentiate modes-of-action of chemical stressors in D. magna as an invertebrate aquatic non-target organism. The mechanistic knowledge extracted from such data will in future contribute to the development of Adverse Outcome Pathways (AOPs) for read-across and prediction of population effects.

17.
Sci Total Environ ; 760: 143914, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333401

RESUMO

Endocrine disruption (ED) can trigger far-reaching effects on environmental populations, justifying a refusal of market approval for chemicals with ED properties. For the hazard assessment of ED effects on the thyroid system, regulatory decisions mostly rely on amphibian studies. Here, we used transcriptomics and proteomics for identifying molecular signatures of interference with thyroid hormone signaling preceding physiological effects in zebrafish embryos. For this, we analyzed the thyroid hormone 3,3',5-triiodothyronine (T3) and the thyroid peroxidase inhibitor 6-propyl-2-thiouracil (6-PTU) as model substances for increased and repressed thyroid hormone signaling in a modified zebrafish embryo toxicity test. We identified consistent gene expression fingerprints for both modes-of-action (MoA) at sublethal test concentrations. T3 and 6-PTU both significantly target the expression of genes involved in muscle contraction and functioning in an opposing fashion, allowing for a mechanistic refinement of key event relationships in thyroid-related adverse outcome pathways in fish. Furthermore, our fingerprints identify biomarker candidates for thyroid disruption hazard screening approaches. Perspectively, our findings will promote the AOP-based development of in vitro assays for thyroidal ED assessment, which in the long term will contribute to a reduction of regulatory animal tests.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Biomarcadores , Embrião não Mamífero , Disruptores Endócrinos/toxicidade , Glândula Tireoide , Toxicogenética , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
18.
Chemosphere ; 240: 124970, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726584

RESUMO

Measurement of specific biomarkers identified by proteomics provides a potential alternative method for risk assessment, which is required to discriminate between hepatotoxicity and endocrine disruption. In this study, adult zebrafish (Danio rerio) were exposed to the hepatotoxic substance acetaminophen (APAP) for 21 days, in a fish short-term reproduction assay (FSTRA). The molecular changes induced by APAP exposure were studied in liver and gonads by applying a previously developed combined FSTRA and proteomics approach. We observed a significant decrease in egg numbers, an increase in plasma hyaluronic acid, and the presence of single cell necrosis in liver tissue. Furthermore, nine common biomarkers (atp5f1b, etfa, uqcrc2a, cahz, c3a.1, rab11ba, mettl7a, khdrbs1a and si:dkey-108k21.24) for assessing hepatotoxicity were detected in both male and female liver, indicating hepatic damage. In comparison with exposure to fadrozole, an endocrine disrupting chemical (EDC), three potential biomarkers for liver injury, i.e. cahz, c3a.1 and atp5f1b, were differentially expressed. The zebrafish proteome response to fadrozole exposure indicated a significant regulation in estrogen synthesis and perturbed binding of sperm to zona pellucida in the ovary. This study demonstrates that biomarkers identified and quantified by proteomics can serve as additional weight-of-evidence for the discrimination of hepatotoxicity and endocrine disruption, which is necessary for hazard identification in EU legislation and to decide upon the option for risk assessment.


Assuntos
Biomarcadores/análise , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Proteômica/métodos , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Animais , Biomarcadores/metabolismo , Diagnóstico Diferencial , Fadrozol/toxicidade , Feminino , Gônadas/efeitos dos fármacos , Masculino , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
19.
Sci Rep ; 9(1): 6599, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036921

RESUMO

The fish short-term reproduction assay (FSTRA) is a common in vivo screening assay for assessing endocrine effects of chemicals on reproduction in fish. However, the current reliance on measures such as egg number, plasma vitellogenin concentration and morphological changes to determine endocrine effects can lead to false labelling of chemicals with non-endocrine modes- of-action. Here, we integrated quantitative liver and gonad shotgun proteomics into the FSTRA in order to investigate the causal link between an endocrine mode-of-action and adverse effects assigned to the endocrine axis. Therefore, we analyzed the molecular effects of fadrozole-induced aromatase inhibition in zebrafish (Danio rerio). We observed a concentration-dependent decrease in fecundity, a reduction in plasma vitellogenin concentrations and a mild oocyte atresia with oocyte membrane folding in females. Consistent with these apical measures, proteomics revealed a significant dysregulation of proteins involved in steroid hormone secretion and estrogen stimulus in the female liver. In the ovary, the deregulation of estrogen synthesis and binding of sperm to zona pellucida were among the most significantly perturbed pathways. A significant deregulation of proteins targeting the transcriptional activity of estrogen receptor (esr1) was observed in male liver and testis. Our results support that organ- and sex-specific quantitative proteomics represent a promising tool for identifying early gene expression changes preceding chemical-induced adverse outcomes. These data can help to establish consistency in chemical classification and labelling.


Assuntos
Sistema Endócrino/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Proteômica , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/genética , Animais , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/toxicidade , Estrogênios/metabolismo , Fadrozol/farmacologia , Fadrozol/toxicidade , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hormônios Esteroides Gonadais/antagonistas & inibidores , Hormônios Esteroides Gonadais/biossíntese , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
20.
Cell Death Dis ; 9(2): 70, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358700

RESUMO

TAF6δ is a pro-apoptotic splice variant of the RNA polymerase II general transcription factor, TAF6, that can dictate life vs. death decisions in animal cells. TAF6δ stands out from classical pro-apoptotic proteins because it is encoded by a gene that is essential at the cellular level, and because it functions as a component of the basal transcription machinery. TAF6δ has been shown to modulate the transcriptome landscape, but it is not known if changes in gene expression trigger apoptosis nor which TAF6δ-regulated genes contribute to cell death. Here we used microarrays to interrogate the genome-wide impact of TAF6δ on transcriptome dynamics at temporal resolution. The results revealed changes in pro-apoptotic BH3-only mitochondrial genes that correlate tightly with the onset of cell death. These results prompted us to test and validate a role for the mitochondrial pathway by showing that TAF6δ expression causes cytochrome c release into the cytoplasm. To further dissect the mechanism by which TAF6δ drives apoptosis, we pinpointed BIM and NOXA as candidate effectors. siRNA experiments showed that both BIM and NOXA contribute to TAF6δ-dependent cell death. Our results identify mitochondrial effectors of TAF6δ-driven apoptosis, thereby providing the first of mechanistic framework underlying the atypical TAF6δ apoptotic pathway's capacity to intersect with the classically defined apoptotic machinery to trigger cell death.


Assuntos
Apoptose , Proteína 11 Semelhante a Bcl-2/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Citocromos c/metabolismo , Ontologia Genética , Humanos , Mitocôndrias/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Transcriptoma/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA