Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytometry A ; 93(2): 194-200, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29265528

RESUMO

Flow cytometry is suitable to discriminate and quantify aquatic microbial cells within a spectrum of fluorescence and light scatter signals. Using fixed gating and operational settings, we developed a finite distribution mixture model, followed by the Voronoi tessellation, to resolve bivariate cytometric profiles into cohesive subgroups of events. This procedure was applied to outline recurrent patterns and quantitative changes of the aquatic microbial community along a river hydrologic continuum. We found five major subgroups within each of the commonly retrieved populations of cells with Low and High content of Nucleic Acids (namely, LNA, and HNA cells). Moreover, the advanced analysis allowed assessing changes of community patterns perturbed by a wastewater feed. Our approach for cytometric data deconvolution confirmed that flow cytometry could represent a prime candidate technology for assessing microbial community patterns in flowing waters. © 2017 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Microbiota/fisiologia , Modelos Biológicos , Rios/microbiologia , Ácidos Nucleicos/análise
2.
Sci Total Environ ; 866: 161339, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36603611

RESUMO

The climate change and increasing anthropogenic pressures are expected to limit the availability of water resources. Hence, active measures must be planned in vulnerable regions to ensure a sustainable water supply and minimize environmental impacts. A pilot test was carried out in the Llobregat River (NE Spain) aiming to provide a useful procedure to cope with severe droughts through indirect water reuse. Reclaimed water was used to restore the minimum flow of the lower Llobregat River, ensuring a suitable water supply downstream for Barcelona. A monitoring was performed to assess chemical and microbiological threats throughout the water treatment train, the river and the final drinking water, including 376 micropollutants and common microbiological indicators. The effects of water disinfection were studied by chlorinating reclaimed water prior to its discharge into the river. Data showed that 10 micropollutants (bromodichloromethane, dibromochloromethane, chloroform, EDDP, diclofenac, iopamidol, ioprimid, lamotrigine, ofloxacin and valsartan) posed a potential risk to aquatic life, whereas one solvent (1,4-dioxane) could affect human health. The chlorination of reclaimed water mitigated the occurrence of pharmaceuticals but, conversely, the concentration of halogenated disinfection by-products increased. From a microbiological perspective, the microbial load decreased along wastewater treatments and, later, along drinking water treatment, ultimately reaching undetectable values in final potable water. Non-chlorinated reclaimed water showed a lower log reduction of E. coli and coliphages than chlorinated water. However, the effect of disinfection vanished once reclaimed water was discharged into the river, as the basal concentration of microorganisms in the Llobregat River was comparable to that of non-chlorinated reclaimed water. Overall, our study indicates that indirect water reuse can be a valid alternative source of drinking water in densely populated areas such as Barcelona (Catalonia - NE Spain). A suitable monitoring procedure is presented to assess the related risks to human health and the aquatic ecosystem.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Ecossistema , Escherichia coli , Secas , Abastecimento de Água , Purificação da Água/métodos , Poluentes Químicos da Água/análise
3.
Freshw Biol ; 65(11): 1973-1988, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33288968

RESUMO

Bamboo, as a pioneer vegetation, often forms forests on bare lands after catastrophic landslides. Compared to evergreen forest soil, bamboo forest soil is much more labile, with a higher percentage of microbially derived organic carbon (OC), lower molecular weight, and lower humic acid content. We hypothesised that different terrigenous organic matter (tOM) sources with varying lability and phosphorus (P) availability select for bacterioplankton with distinct metabolic pathways.We incubated natural bacterioplankton assemblages with tOM leached from bamboo forest soil (BOM) and evergreen forest soil (EOM) and compared these to a lake water control. To test if microbial metabolism would be limited by OC or P availability of each tOM treatment, we used acetate as an extra labile OC source and phosphate as an inorganic P source. Bacterial metabolism was measured by analysing respiration via O2 consumption and production via tritiated thymidine (TdR) assimilation.Bacterioplankton metabolism is limited by the availability of P in BOM substrates. When using BOM, bacteria had higher enzymatic activities for phosphatase. The nutrients required for bacterial biomass seemed to be derived from organic matter. Under BOM treatment, bacterial production (BP) (0.92 ± 0.13 µg C L-1 hr-1) and cell specific TdR assimilation rates (0.015 ± 0.002 10-18 M TdR cell-1 hr-1) were low. Adding P enhanced BP (BOM+P 1.52 ± 0.31 and BOM+C+P 2.25 ± 0.37 µg C L-1 hr-1) while acetate addition had no significant effect on BOM treatment.This indicated that the bacteria switched to using added inorganic P to respire a P-limited BOM substrate, which increased total BP and abundance, resulting in even more active respiration and lower growth efficiency. We also found higher activities for chitin-degrading enzyme ß-N-acetylglucosaminidase, which is associated with N mining from aminosaccharides.Microbes using EOM, however, did not change metabolic strategies with additional acetate or/and inorganic P. This is due to higher concentrations of organic P in EOM substrates and the presence of inorganic N in the EOM leachates an alternative nutrient source. Bacteria produced ß-glucosidase and leucyl-aminopeptidase in order to utilise the humic substances, which sustained greater bacterial abundance, higher BP (2.64 ± 0.39 µg C L-1 hr-1), and lower cell-specific respiration. This yielded a much higher bacterial growth efficiency (15 ± 9.2%) than the lake water control.Our study demonstrated the aquatic metabolic discrepancy between tOM of different forest types. Bacterioplankton in BOM and EOM exhibit distinct metabolic responses. Bacterial metabolic strategy when using BOM implied that the supposedly stabilised biomass OM might be efficiently used by aquatic bacterioplankton. As the labile and nutrient-deficient BOM is more susceptible to the influence of additional nutrients, fertiliser residues in bamboo forest catchments might have a stronger effect on aquatic bacterial metabolic pathways. Thus, it is important to take tOM differences into consideration when building models to estimate soil carbon turnover rates along a terrestrial-aquatic continuum.

4.
PLoS One ; 13(5): e0196991, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782501

RESUMO

Tropical small-scale fisheries are typical for providing complex multivariate data, due to their diversity in fishing techniques and highly diverse species composition. In this paper we used for the first time a supervised Self-Organizing Map (xyf-SOM), to recognize and understand the internal heterogeneity of a tropical marine small-scale fishery, using as model the fishery fleet of San Pedro port, Tabasco, Mexico. We used multivariate data from commercial logbooks, including the following four factors: fish species (47), gear types (bottom longline, vertical line+shark longline and vertical line), season (cold, warm), and inter-annual variation (2007-2012). The size of the xyf-SOM, a fundamental characteristic to improve its predictive quality, was optimized for the minimum distance between objects and the maximum prediction rate. The xyf-SOM successfully classified individual fishing trips in relation to the four factors included in the model. Prediction percentages were high (80-100%) for bottom longline and vertical line + shark longline, but lower prediction values were obtained for vertical line (51-74%) fishery. A confusion matrix indicated that classification errors occurred within the same fishing gear. Prediction rates were validated by generating confidence interval using bootstrap. The xyf-SOM showed that not all the fishing trips were targeting the most abundant species and the catch rates were not symmetrically distributed around the mean. Also, the species composition is not homogeneous among fishing trips. Despite the complexity of the data, the xyf-SOM proved to be an excellent tool to identify trends in complex scenarios, emphasizing the diverse and complex patterns that characterize tropical small scale-fishery fleets.


Assuntos
Pesqueiros , Animais , Análise por Conglomerados , Conservação dos Recursos Naturais , Peixes , Mapas como Assunto , México , Estações do Ano
5.
Sci Total Environ ; 599-600: 1802-1812, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28545207

RESUMO

Understanding DOM transport and reactivity in rivers is essential to having a complete picture of the global carbon cycle. In this study, we explore the effects of hydrological variability and downstream transport on dissolved organic matter (DOM) dynamics in a Mediterranean river. We sampled the main stem of the river Tordera from the source to the sea, over a range of fifteen hydrological conditions including extreme events (flood and drought). By exploring spatial and temporal gradients of DOM fluorescence properties, river hydrology was found to be a significant predictor of DOM spatial heterogeneity. An additional space-resolved mass balance analysis performed on four contrasting hydrological conditions revealed that this was due to a shift in the biogeochemical function of the river. Flood conditions caused a conservative transport of DOM, generating a homogeneous, humic-like spatial profile of DOM quality. Lower flows induced a non-conservative, reactive transport of DOM, which enhanced the spatial heterogeneity of DOM properties. Moreover, the downstream evolution of DOM chemostatic behaviour revealed that the role of hydrology in regulating DOM properties increased gradually downstream, indicating an organised inter-dependency between the spatial and the temporal dimensions. Overall, our findings reveal that riverine DOM dynamics is in constant change owing to varying hydrological conditions, and emphasize that in order to fully understand the role of rivers in the global carbon cycle, it is necessary to take into account the full range of hydrological variability, from floods to droughts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA