RESUMO
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last â¼35â years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30â years of research.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Prosencéfalo , Fatores de Transcrição , Animais , Prosencéfalo/metabolismo , Prosencéfalo/embriologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Mamíferos/genética , CamundongosRESUMO
Dopaminergic (DAnergic) dysfunction and imbalanced dopamine (DA) levels are known contributors to the pathogenesis of numerous psychiatric and neurodegenerative disorders. Of the many identified risk factors for DA-associated disorders, nuclear receptor subfamily 4 group A2 (NR4A2; or nuclear receptor related-1 protein (NURR1)), a transcription factor involved in DAnergic differentiation, has been associated with Parkinson's disease and attention deficit hyperactive disorder (ADHD). In zebrafish, transient loss of nr4a2 was previously shown to decrease tyrosine hydroxylase (TH) expression and impair locomotion. To further characterize the roles of the two zebrafish nr4a2 paralogs, nr4a2a, and nr4a2b, we produced targeted loss-of-function mutants and examined DAnergic neuron regeneration, oxidative respiration, and behavioral traits. The loss of nr4a2a function more closely recapitulated Parkinsonian phenotypes and affected neurotrophic factor gene expression. Conversely, nr4a2b mutants displayed behavioral symptoms reminiscent of mice deficient in Nr4a2 with increased neurotrophic output. In contrast, nr4a2b mutants also displayed increased metabolic input from non-mitochondrial sources indicative of high cytosolic reactive oxygen species and perturbed mitochondrial function. The nr4a2a mutants also showed increased maximal respiration, which may suggest a compensatory mechanism to meet the metabolic requirements of DAnergic neuron health. Overall, the zebrafish mutants generated in this study helped uncover molecular mechanisms involved in DA-related disease pathologies, and in the regeneration of DAnergic neurons.
RESUMO
PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.
Assuntos
Proteínas Ferro-Enxofre , Fatores de Transcrição , Peixe-Zebra , Animais , Feminino , Humanos , Lactente , Masculino , Citosol/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Metalochaperonas , Microcefalia/genética , Microcefalia/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Glial cell line-derived neurotrophic factor (GDNF) has been reported to enhance dopaminergic neuron survival and differentiation in vitro and in vivo, although those results are still being debated. Glial cell line-derived neurotrophic factor (gdnf) is highly conserved in zebrafish and plays a role in enteric nervous system function. However, little is known about gdnf function in the teleost brain. Here, we employed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to impede gdnf function in the maintenance of dopaminergic neuron development. Genotyping of gdnf crispants revealed successful deletions of the coding region with various mutant band sizes and down-regulation of gdnf transcripts at 1, 3 and 7 day(s) post fertilization. Notably, ~20% reduction in ventral diencephalic dopaminergic neuron numbers in clusters 8 and 13 was observed in the gdnf-deficient crispants. In addition, gdnf depletion caused a modest reduction in dopaminergic neurogenesis as determined by 5-ethynyl-2'-deoxyuridine pulse chase assay. These deleterious effects could be partly attributed to deregulation of dopaminergic neuron fate specification-related transcription factors (otp,lmx1b,shha,and ngn1) in both crispants and established homozygous mutants with whole mount in-situ hybridization (WISH) on gdnf mutants showing reduced otpb and lmx1b.1 expression in the ventral diencephalon. Interestingly, locomotor function of crispants was only impacted at 7 dpf, but not earlier. Lastly, as expected, gdnf deficiency heightened crispants vulnerability to 1-methyl-4-phenylpyridinium toxic insult. Our results suggest conservation of teleost gdnf brain function with mammals and revealed the interactions between gdnf and transcription factors in dopaminergic neuron differentiation.
Assuntos
Diferenciação Celular/fisiologia , Diencéfalo/embriologia , Diencéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Fatores de Transcrição/deficiência , Proteínas de Peixe-Zebra/deficiência , Animais , Animais Geneticamente Modificados , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.
Assuntos
Epilepsia/etiologia , Proteínas/genética , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo , Fosfato de Piridoxal/uso terapêutico , Piridoxina/deficiência , Vitamina B 6/metabolismo , Deficiência de Vitamina B 6/genética , Deficiência de Vitamina B 6/metabolismo , Peixe-ZebraRESUMO
Lineage tracing of specific populations of progenitor cells provides crucial information about developmental programs. Four members of the Dlx homeobox gene family, Dlx1,2, 5 and 6, are involved in the specification of γ-aminobutyric acid (GABA)ergic neurons in the vertebrate forebrain. Orthologous genes in mammals and teleost show similarities in expression patterns and transcriptional regulation mechanisms. We have used lineage tracing to permanently label dlx-expressing cells in the zebrafish and have characterized the progeny of these cells in the larva and in the juvenile and adult brain. We have found that dlx1a/2a and dlx5a/6a expressing progenitors give rise, for the most part, to small populations of cells which constitute only a small proportion of GABAergic cells in the adult brain tissue. Moreover, some of the cells do not acquire a neuronal phenotype suggesting that, regardless of the time a cell expresses dlx genes in the brain, it can potentially give rise to cells other than neurons. In some instances, labeling larval dlx5a/6a-expressing cells, but not dlx1a/2a-expressing cells, results in massively expanding, widespread clonal expansion throughout the adult brain. Our data provide a detailed lineage analysis of the dlx1a/2a and dlx5a/6a expressing progenitors in the zebrafish brain and lays the foundation for further characterization of the role of these transcription factors beyond the specification of GABAergic neurons.
Assuntos
Encéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Linhagem da Célula/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Hibridização In Situ , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Células-Tronco Embrionárias Murinas/citologia , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Proteína Vermelha FluorescenteRESUMO
Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.
Assuntos
Transtorno Autístico/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/fisiopatologia , Transdução de Sinais , Transtorno de Movimento Estereotipado/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/citologia , Comportamento Compulsivo/complicações , Comportamento Compulsivo/genética , Comportamento Compulsivo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Genótipo , Glutamato Descarboxilase/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Proteínas de Homeodomínio/genética , Potenciais Pós-Sinápticos Inibidores , Potenciação de Longa Duração , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Inibição Neural , Plasticidade Neuronal , Neurônios/metabolismo , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Transtornos Psicomotores/complicações , Transtornos Psicomotores/genética , Transtornos Psicomotores/fisiopatologia , Reflexo de Sobressalto/genética , Respiração , Síndrome de Rett/complicações , Síndrome de Rett/genética , Síndrome de Rett/patologia , Comportamento Autodestrutivo/complicações , Comportamento Autodestrutivo/genética , Comportamento Autodestrutivo/fisiopatologia , Transtorno de Movimento Estereotipado/complicações , Transtorno de Movimento Estereotipado/genética , Transtorno de Movimento Estereotipado/patologia , Taxa de Sobrevida , Transmissão Sináptica , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genéticaRESUMO
To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons.
Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Discinesia Induzida por Medicamentos/genética , Locomoção/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Discinesia Induzida por Medicamentos/fisiopatologia , Proteínas de Fluorescência Verde , Humanos , Larva/crescimento & desenvolvimento , Intoxicação por MPTP/patologia , Metronidazol/farmacologia , Regeneração Nervosa , Natação , Peixe-ZebraRESUMO
Pentachloroanisole (PCA) and pentachlorophenol (PCP) are chlorinated aromatic compounds that have been found in the environment and in human populations. The objective of this study is to characterize the effects of PCA in comparison to those of PCP on development at environmental relevant levels using a fish model. Zebrafish embryos were exposed to 0.1, 1, 10, 100, 500, 1000 µg/L PCA and PCP respectively for 96 h. Malformation observation, LC50 testing for survival rate at 96 hours post fertilization (hpf) and EC50 testing for hatching rate at 72 hpf indicated that the developmental toxicity of PCP was about 15 times higher than that of PCA. PCP exposure at 10 µg/L resulted in elevated 3, 3', 5-triiodothyronine (T3) levels and decreased thyroxine (T4) levels, whereas PCA had no effects on T3 or T4 levels. PCP and PCA exposure at 1 and 10 µg/L showed possible hyperthyroid effects similar to that of T3, due to increased relative mRNA expression of synapsin I (SYN), iodothyronine deiodinase type III (Dio3), thyroid hormone receptor alpha a (THRαa) and thyroid hormone receptor beta (THRß), and decreased expression of iodothyronine deiodinase type II (Dio2). The results indicate that both PCA and PCP exposure can cause morphological deformities, possibly affect the timing and coordination of development in the central nervous system, and alter thyroid hormone levels by disrupting thyroid hormone regulating pathways. However, the developmental toxicity of PCA is at least ten times lower than that of PCP. Our results on the relative developmental toxicities of PCA and PCP and the possible underlying mechanisms will be useful to support interpretation of envrionmental concentrations and body burden levels observed in human populations.
Assuntos
Anisóis/toxicidade , Poluentes Ambientais/toxicidade , Pentaclorofenol/toxicidade , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Humanos , Dose Letal Mediana , Glândula Tireoide/efeitos dos fármacos , Peixe-Zebra/metabolismoRESUMO
Spontaneous intracranial hemorrhage is a debilitating form of stroke, often leading to death or permanent cognitive impairment. Many of the causative genes and the underlying mechanisms implicated in developmental cerebral-vascular malformations are unknown. Recent in vitro and in vivo studies in mice have shown inhibition of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway to be effective in stabilizing cranial vessels. Using a combination of pharmacological and genetic approaches to specifically inhibit the HMGCR pathway in zebrafish (Danio rerio), we demonstrate a requirement for this metabolic pathway in developmental vascular stability. Here we report that inhibition of HMGCR function perturbs cerebral-vascular stability, resulting in progressive dilation of blood vessels, followed by vessel rupture, mimicking cerebral cavernous malformation (CCM)-like lesions in humans and murine models. The hemorrhages in the brain are rescued by prior exogenous supplementation with geranylgeranyl pyrophosphate (GGPP), a 20-carbon metabolite of the HMGCR pathway, required for the membrane localization and activation of Rho GTPases. Consistent with this observation, morpholino-induced depletion of the ß-subunit of geranylgeranyltransferase I (GGTase I), an enzyme that facilitates the post-translational transfer of the GGPP moiety to the C-terminus of Rho family of GTPases, mimics the cerebral hemorrhaging induced by the pharmacological and genetic ablation of HMGCR. In embryos with cerebral hemorrhage, the endothelial-specific expression of cdc42, a Rho GTPase involved in the regulation of vascular permeability, was significantly reduced. Taken together, our data reveal a metabolic contribution to the stabilization of nascent cranial vessels, requiring protein geranylgeranylation acting downstream of the HMGCR pathway.
Assuntos
Cérebro/irrigação sanguínea , Cérebro/embriologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Prenilação , Transdução de Sinais , Peixe-Zebra/embriologia , Alquil e Aril Transferases/metabolismo , Animais , Atorvastatina , Hemorragia Cerebral/embriologia , Hemorragia Cerebral/patologia , Cérebro/efeitos dos fármacos , Cérebro/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/enzimologia , Embrião não Mamífero/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ácidos Heptanoicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos , Morfolinos/farmacologia , Fosfatos de Poli-Isoprenil/biossíntese , Prenilação/efeitos dos fármacos , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/fisiologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Diencéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Interneurônios/metabolismo , Mutação , Fenótipo , Telencéfalo/metabolismoRESUMO
During brain morphogenesis, the mechanisms through which the cell cycle machinery integrates with differentiation signals remain elusive. Here we show that the Rb/E2F pathway regulates key aspects of differentiation and migration through direct control of the Dlx1 and Dlx2 homeodomain proteins, required for interneuron specification. Rb deficiency results in a dramatic reduction of Dlx1 and Dlx2 gene expression manifested by loss of interneuron subtypes and severe migration defects in the mouse brain. The Rb/E2F pathway modulates Dlx1/Dlx2 regulation through direct interaction with a Dlx forebrain-specific enhancer, I12b, and the Dlx1/Dlx2 proximal promoter regions, through repressor E2F sites both in vitro and in vivo. In the absence of Rb, we demonstrate that repressor E2Fs inhibit Dlx transcription at the Dlx1/Dlx2 promoters and Dlx1/2-I12b enhancer to suppress differentiation. Our findings support a model whereby the cell cycle machinery not only controls cell division but also modulates neuronal differentiation and migration through direct regulation of the Dlx1/Dlx2 bigene cluster during embryonic development.
Assuntos
Fatores de Transcrição E2F/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/biossíntese , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Contagem de Células/métodos , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Transdução de Sinais/fisiologiaRESUMO
Dlx homeobox genes play a crucial role in the migration and differentiation of the subpallial precursor cells that give rise to various subtypes of gamma-aminobutyric acid (GABA)-expressing neurons of the forebrain, including local-circuit cortical interneurons. Aberrant development of GABAergic interneurons has been linked to several neurodevelopmental disorders, including epilepsy, schizophrenia, Rett syndrome and autism. Here, we report in mice that a single-nucleotide polymorphism (SNP) found in an autistic proband falls within a functional protein binding site in an ultraconserved cis-regulatory element. This element, I56i, is involved in regulating Dlx5/Dlx6 homeobox gene expression in the developing forebrain. We show that the SNP results in reduced I56i activity, predominantly in the medial and caudal ganglionic eminences and in streams of neurons tangentially migrating to the cortex. Reduced activity is also observed in GABAergic interneurons of the adult somatosensory cortex. The SNP affects the affinity of Dlx proteins for their binding site in vitro and reduces the transcriptional activation of the enhancer by Dlx proteins. Affinity purification using I56i sequences led to the identification of a novel regulator of Dlx gene expression, general transcription factor 2 I (Gtf2i), which is among the genes most often deleted in Williams-Beuren syndrome, a neurodevelopmental disorder. This study illustrates the clear functional consequences of a single nucleotide variation in an ultraconserved non-coding sequence in the context of developmental abnormalities associated with disease.
Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Polimorfismo de Nucleotídeo Único , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Animais , Sequência de Bases , Movimento Celular , Sequência Conservada , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Prosencéfalo/citologia , Alinhamento de Sequência , Transcrição GênicaRESUMO
The Special Issue "Animal Models of Neurological Disorders: Where Are We Now [...].
RESUMO
The dlx genes encode transcription factors that establish a proximal-distal polarity within neural crest cells to bestow a regional identity during craniofacial development. The expression regions of dlx paralogs are overlapping yet distinct within the zebrafish pharyngeal arches and may also be involved in progressive morphologic changes and organization of chondrocytes of the face. However, how each dlx paralog of dlx1a, dlx2a, dlx5a and dlx6a affects craniofacial development is still largely unknown. We report here that the average lengths of the Meckel's, palatoquadrate and ceratohyal cartilages in different dlx mutants were altered. Mutants for dlx5a-/- and dlx5i6-/-, where the entire dlx5a/dlx6a locus was deleted, have the shortest lengths for all three structures at 5 days post fertilization (dpf). This phenotype was also observed in 14 dpf larvae. Loss of dlx5i6 also resulted in increased proliferation of neural crest cells and expression of chondrogenic markers. Additionally, altered expression and function of non-canonical Wnt signaling were observed in these mutants suggesting a novel interaction between dlx5i6 locus and non-canonical Wnt pathway regulating ventral cartilage morphogenesis.
Assuntos
Região Branquial , Via de Sinalização Wnt , Animais , Condrócitos , Condrogênese , Peixe-Zebra/genéticaRESUMO
Perfluorooctanesulfonic acid (PFOS) has widely been reported to persist in the environment and to elicit neurotoxicological effects in wildlife and humans. Following the restriction of PFOS use, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) have emerged as novel PFOS alternatives and have been detected in the environment. However, knowledge on the toxicological effects of these alternatives remains scarce. Using developing transgenic Tg(dat:eGFP) zebrafish, we evaluated the consequences of exposure to 0, 0.1 and 1 mg/l PFOS, F-53B and OBS on the dopaminergic system, locomotor behaviour and mitochondrial function. All compounds generally reduced locomotor activity under light conditions irrespective of exposure concentration. Exposure to OBS (at all concentrations), as well as PFOS and F-53B (at 1 mg/l), significantly reduced subpallial dopaminergic neuron abundance. PFOS also significantly reduced dat and pink1 expression irrespective of exposure concentration, while F-53B and OBS tended to reduce mitochondrial pink1 and fis1 expression across concentrations without reaching statistical significance. Mitochondrial function, in the form of reduced oxygen consumption rate and marginally inhibited ATP-linked oxygen consumption rate, was affected only in response to 1 mg/l PFOS. Together, PFOS and the emerging contaminants F-53B and OBS inhibit locomotion at similar concentrations, a finding correlated with decreased dopaminergic neuron numbers in the subpallium and decreased expression of pink1. These findings are relevant to wildlife and human health, as they suggest that PFOS as well as replacement compounds affect locomotion likely in part by negatively impacting the dopamine system.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/metabolismo , Dopamina/metabolismo , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Animais Selvagens , Proteínas Quinases/metabolismoRESUMO
With the successful identification of many protein-coding genes, the focus has now shifted toward deciphering functions of non-protein-coding regions that direct spatiotemporal and quantitative aspects of protein expression. Recent advances in our understanding of the regulatory architecture of the human genome coincide with growing evidence that changes in regulatory sequences are associated with human disease. Several recent reviews have highlighted disease-causing potential of aberrations in transcriptional and splicing regulatory elements as well as non-protein-coding RNA. Although changes in regulatory sequences generally produce milder biological effects than their protein-coding counterparts, many act as independent risk factors for common complex disorders or as genetic modifiers for "primary" disease-causing loci. Here, we review bioinformatics and experimental approaches that are used to identify regulatory sequences and assess pathogenicity of regulatory changes. We describe the current state of knowledge on disease-causing changes in regulatory sequences, challenge protein-centric views, and discuss complexities and solutions pertaining to the interpretation of regulatory changes in the next-generation sequencing era.
Assuntos
Patologia Molecular/métodos , Sequências Reguladoras de Ácido Nucleico/genética , Genoma Humano/genética , Humanos , Análise de Sequência de DNA/métodosRESUMO
Mitochondrial respiration is mediated by a set of multisubunit assemblies of proteins that are embedded in the mitochondrial inner membranes. Respiratory complexes do not only contain central catalytic subunits essential for the bioenergetic transformation, but also many short trans-membrane subunits (sTMs) that are implicated in the proper assembly of complexes. Defects in sTMs have been discovered in some human neurodegenerative diseases. Here we identify a new subunit that we named Stmp1 and have characterized its function using both computational and experimental approaches. Stmp1 is a short trans-membrane protein, and sequence/structure analysis revealed that it shares common features like the small size, presence of a single or two TM region, and a COOH-terminal charged region, as many typical sTMs of respiratory complexes. In situ hybridization and RT-PCR assays showed that the Stmp1 expression is ubiquitous throughout zebrafish embryogenesis. In adults, Stmp1 expression was highest in the brain compared with muscle and liver. In zebrafish larvae (3-5 days postfertilization), antisense morpholino oligonucleotide-mediated knockdown of the Stmp1 gene (Stmp1-MO) resulted in a series of mild morphological defects, including abnormal shape of head and jaw and cardiac edema. Larvae injected with the Stmp1-MO had negligible responses to touch stimuli. By ventilation frequency analysis we found that Stmp1-MO-injected zebrafish displayed a severe dysfunction of ventilatory activities when exposed to hypoxic conditions, suggesting a defective mitochondrial activity induced by the loss of Stmp1. Phylogenetic profiling of known respiratory sTMs compared with Stmp1 revealed that all defined sTMs from four respiratory complexes have restricted or variable phyletic distribution, indicating that they are products of evolutionary innovations to fulfill lineage-related functional requirements for respiratory complexes. Thus, being present in animals, filasterea, choanoflagellida, amoebozoa, and plants, Stmp1 may have evolved to confer a new or complementary regulation of respiratory activities.
Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/classificação , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Hibridização In Situ , Larva/genética , Larva/crescimento & desenvolvimento , Proteínas Mitocondriais/classificação , Dados de Sequência Molecular , Filogenia , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/classificaçãoRESUMO
Many genes associated with familial Parkinson's disease contribute to mitochondrial morphology and function. Some of these genes, for example, Pink1 and Parkin, are part of a common pathway. The presenilin-associated rhomboid-like (PARL) gene was recently linked to familial Parkinson's disease. The PARL gene product is found in the inner mitochondrial membrane and cleaves the optic atrophy 1 protein, involved in mitochondrial morphology and apoptosis. In Drosophila, the PARL-related rhomboid-7 gene acts upstream of pink1 and parkin. However, such a genetic relationship is still unknown in vertebrates. Here, we show that the zebrafish genome comprises two parl paralogs: parla and parlb. Morpholino-mediated loss of parla and/or parlb function resulted in mild neurodegeneration, as evidenced by a lower density of dopaminergic neurons. Patterning of dopaminergic neurons was also perturbed in the ventral diencephalon. Morphants exhibited extensive cell death throughout the entire body as well as increased larval mortality. The morphant phenotype could be rescued by injection of human PARL mRNA, but not catalytically inactive PARL, suggesting functional conservation between the human and zebrafish proteins. More importantly, the zebrafish pink1 mRNA as well as the human PINK1 mRNA, but not kinase-dead nor Parkinson's disease-linked mutant PINK1 mRNA, also rescued the morphant phenotype, providing evidence that Parl genes may function upstream of Pink1, as part of a conserved pathway in vertebrates.
Assuntos
Padronização Corporal/genética , Neurônios Dopaminérgicos/fisiologia , Metaloproteases/genética , Proteínas Mitocondriais/deficiência , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Laranja de Acridina , Animais , Animais Geneticamente Modificados , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Clonagem Molecular , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Larva/citologia , Proteínas Mitocondriais/genética , Morfolinos/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência/métodos , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-ZebraRESUMO
We have generated a line of transgenic zebrafish, Tg(dat:EGFP), in which the green fluorescent protein (GFP) is expressed under the control of cis-regulatory elements of the dopamine transporter (dat) gene. In Tg(dat:EGFP) fish, dopamine (DA) neurons are labeled with GFP, including those in ventral diencephalon (vDC) clusters, amacrine cells in the retina, in the olfactory bulb, in the pretectum, and in the caudal hypothalamus. In the vDC, DA neurons of groups 2-6 are correctly labeled with GFP, based on colocalization analyses. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) treatments induced a modest but significant loss of DA neurons in groups 2-6 of the vDC. This transgenic line will be useful for the study of DA neuron development and in models of DA neuron loss.