Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Bioorg Chem ; 145: 107225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402797

RESUMO

The study presents a significant advancement in drug delivery and therapeutic efficacy through the successful synthesis of Gliricidia sepium(Jacq.) Kunth. ex. Walp., stem zinc oxide nanoparticles(GSS ZnONPs). The phenolic compounds present in Gliricidia sepium stem (GSS) particularly vanillic acid, apegnin-7-O-glucoside, syringic acid, and p-coumaric acid which were identified by HPLC. These compounds shown antioxidant and anti-inflammatory properties. GSS ZnONPs demonstrate pronounced gastroprotective effects against ethanol-induced gastritis, evidenced by the reduction in gastric lesions and mucosal injury upon its treatment. Histopathological evaluation and immunohistochemical analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) expression further validate these results, revealing the amelioration of ethanol-induced gastritis and improved gastric tissue condition due to their treatment. Noteworthy is the dose-dependent response of GSS ZnONPs, showcasing their efficacy even at lower doses against ethanol-induced gastritis which is confirmed by different biomarkers. These findings have substantial implications for mitigating dosage-related adverse effects while preserving therapeutic benefits, offering a more favorable treatment approach. This study aims to investigate the potential gastroprotective activity of GSS ZnONPs against gastritis.


Assuntos
Gastrite , Úlcera Gástrica , Óxido de Zinco , Ratos , Animais , Etanol , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia
2.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500468

RESUMO

Almost one-third of all infectious diseases are caused by viruses, and these diseases account for nearly 20% of all deaths globally. It is becoming increasingly clear that highly contagious viral infections pose a significant threat to global health and economy around the world. The need for innovative, affordable, and safe antiviral therapies is a must. Zinc oxide nanoparticles are novel materials of low toxicity and low cost and are known for their antiviral activity. The genus Pelargonium was previously reported for its antiviral and antimicrobial activity. In this work, Pelargonium zonale leaf extract chemical profile was studied via high-performance liquid chromatography (HPLC) and was used for the biosynthesis of zinc oxide nanoparticles. Furthermore, the antiviral activity of the combination of P. zonale extract and the biosynthesized nanoparticles of ZnO against the human corona 229E virus was investigated. Results revealed that ZnONPs had been biosynthesized with an average particle size of about 5.5 nm and characterized with UV, FTIR, TEM, XRD, and SEM. The antiviral activity showed significant activity and differences among the tested samples in favor of the combination of P. zonale extract and ZnONPs (ZnONPs/Ex). The lowest IC50, 2.028 µg/mL, and the highest SI, 68.4 of ZnONPs/Ex, assert the highest antiviral activity of the combination against human coronavirus (229E).


Assuntos
Nanopartículas Metálicas , Nanopartículas , Pelargonium , Vírus , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antivirais/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas/química , Nanopartículas Metálicas/química
3.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615461

RESUMO

SARS-CoV-2 has caused more than 596 million infections and 6 million fatalities globally. Looking for urgent medication for prevention, treatment, and rehabilitation is obligatory. Plant extracts and green synthesized nanoparticles have numerous biological activities, including antiviral activity. HPLC analysis of C. dirnum L. leaf extract showed that catechin, ferulic acid, chlorogenic acid, and syringic acid were the most major compounds, with concentrations of 1425.16, 1004.68, 207.46, and 158.95 µg/g, respectively. Zinc nanoparticles were biosynthesized using zinc acetate and C. dirnum extract. TEM analysis revealed that the particle size of ZnO-NPs varied between 3.406 and 4.857 nm. An XRD study showed the existence of hexagonal crystals of ZnO-NPs with an average size of 12.11 nm. Both ZnO-NPs (IC50 = 7.01 and CC50 = 145.77) and C. dirnum L. extract (IC50 = 61.15 and CC50 = 145.87 µg/mL) showed antiviral activity against HCOV-229E, but their combination (IC50 = 2.41 and CC50 = 179.23) showed higher activity than both. Molecular docking was used to investigate the affinity of some metabolites against the HCOV-229E main protease. Chlorogenic acid, solanidine, and catchin showed high affinity (-7.13, -6.95, and -6.52), compared to the ligand MDP (-5.66 Kcal/mol). Cestrum dinurum extract and ZnO-NPs combination should be subjected to further studies to be used as an antiviral drug.


Assuntos
COVID-19 , Cestrum , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Nanopartículas Metálicas/química , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Zinco , SARS-CoV-2/metabolismo , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/química , Testes de Sensibilidade Microbiana
4.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443414

RESUMO

Natural antioxidants, especially those of plant origins, have shown a plethora of biological activities with substantial economic value, as they can be extracted from agro-wastes and/or under exploited plant species. The perennial hydrophyte, Potamogeton perfoliatus, has been used traditionally to treat several health disorders; however, little is known about its biological and its medicinal effects. Here, we used an integrated in vitro and in vivo framework to examine the potential effect of P. perfoliatus on oxidative stress, nociception, inflammatory models, and brewer's yeast-induced pyrexia in mice. Our results suggested a consistent in vitro inhibition of three enzymes, namely 5-lipoxygenase, cyclooxygenases 1 and 2 (COX-1 and COX-2), as well as a potent antioxidant effect. These results were confirmed in vivo where the studied extract attenuated carrageenan-induced paw edema, carrageenan-induced leukocyte migration into the peritoneal cavity by 25, 44 and 64% at 200, 400 and 600 mg/kg, p.o., respectively. Moreover, the extract decreased acetic acid-induced vascular permeability by 45% at 600 mg/kg, p.o., and chemical hyperalgesia in mice by 86% by 400 mg/kg, p.o., in acetic acid-induced writhing assay. The extract (400 mg/kg) showed a longer response latency at the 3 h time point (2.5 fold of the control) similar to the nalbuphine, the standard opioid analgesic. Additionally, pronounced antipyretic effects were observed at 600 mg/kg, comparable to paracetamol. Using LC-MS/MS, we identified 15 secondary metabolites that most likely contributed to the obtained biological activities. Altogether, our findings indicate that P. perfoliatus has anti-inflammatory, antioxidant, analgesic and antipyretic effects, thus supporting its traditional use and promoting its valorization as a potential candidate in treating oxidative stress-associated diseases.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Antipiréticos/farmacologia , Extratos Vegetais/farmacologia , Potamogetonaceae/química , Ácido Acético , Animais , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Carragenina , Movimento Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Edema/patologia , Febre/patologia , Glucosídeos Iridoides/farmacologia , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Cavidade Peritoneal/patologia , Fenilpropionatos/farmacologia , Compostos Fitoquímicos/análise , Ratos , Saccharomyces cerevisiae
5.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808553

RESUMO

Infections associated with the emergence of multidrug resistance and mosquito-borne diseases have resulted in serious crises associated with high mortality and left behind a huge socioeconomic burden. The chemical investigation of Lavandulacoronopifolia aerial parts extract using HPLC-MS/MS led to the tentative identification of 46 compounds belonging to phenolic acids, flavonoids and their glycosides, and biflavonoids. The extract displayed larvicidal activity against Culex pipiens larvae (LC50 = 29.08 µg/mL at 72 h). It significantly inhibited cytochrome P-450 monooxygenase (CYP450), acetylcholinesterase (AChE), and carboxylesterase (CarE) enzymes with the comparable pattern to the control group, which could explain the mode of larvae toxification. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa by 17-38% at different Minimum Inhibitory Concentrations (MICs) (0.5-0.125 mg/mL) while the activity was doubled when combined with ciprofloxacin (ratio = 1:1 v:v). In conclusion, the wild plant, L.coronopifolia, can be considered a promising natural source against resistant bacteria and infectious carriers.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Culex/crescimento & desenvolvimento , Inseticidas , Lavandula/química , Extratos Vegetais , Folhas de Planta/química , Pseudomonas aeruginosa/fisiologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Inseticidas/química , Inseticidas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
6.
Molecules ; 24(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086086

RESUMO

The wax apple (Syzygium samarangense) is traditionally employed as an antibacterial and immunostimulant drug in traditional medicine. This plant is rich in different flavonoids and tannins. In this study, we isolated two compounds from S. samarangense leaves: myricitrin and 3,5-di-O-methyl gossypetin. Then, we investigated the mechanisms of action of the two compounds against oxidative stress (induced by sodium arsenite) and inflammation (induced by UV light) on human keratinocytes. We could clearly demonstrate that the pre-treatment of cells with both compounds was able to mitigate the negative effects induced by oxidative stress, as no alteration in reactive oxygen species (ROS) production, glutathione (GSH) level, or protein oxidation was observed. Additionally, both compounds were able to modulate mitogen-activated protein kinase (MAPK) signaling pathways to counteract oxidative stress activation. Finally, we showed that 3,5-di-O-methyl gossypetin exerted its antioxidant activity through the nuclear transcription factor-2 (Nrf-2) pathway, stimulating the expression of antioxidant proteins, such as HO-1 and Mn-SOD-3.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Syzygium/química , Antioxidantes/metabolismo , Linhagem Celular , Flavonoides/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Molecules ; 24(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602714

RESUMO

A hitherto unknown polyoxygenated flavonol robinobioside (gossypetin-3-O-ß-d-robinobioside) was isolated from the leaves of Caesalpinia gilliesii along with thirteen known phenolic secondary metabolites. The isolated compounds were characterized using spectroscopic analysis, including 1D and 2D NMR and mass spectrometry (MS) analyses. The extract reduced the level of liver damage in CCl4-induced liver injury in rats. A decrease of the liver biomarkers-aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and an increase of total antioxidant capacity (TAC) levels-were observed similar to the liver protecting drug silymarin. In addition, the extract showed promising activity against carrageenan-induced paw edema in rats and protected their stomachs against ethanol-induced gastric ulcers in a concentration dependent fashion. The observed activities could be attributed to the high content of antioxidant polyphenols. Our results suggest that the C. gilliesii has the capacity to scavenge free radicals and can protect against oxidative stress, and liver and stomach injury.


Assuntos
Caesalpinia/química , Edema/prevenção & controle , Flavonóis/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Úlcera/prevenção & controle , Alanina Transaminase/genética , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Aspartato Aminotransferases/genética , Tetracloreto de Carbono/toxicidade , Carragenina/toxicidade , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/metabolismo , Flavonóis/química , Flavonóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Silimarina/administração & dosagem , Silimarina/química , Silimarina/farmacologia , Úlcera/induzido quimicamente
8.
Molecules ; 22(11)2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149062

RESUMO

Albizia harveyi is a tropical deciduous tree, found across South and Eastern Africa and widely used in traditional medicine. The leaf extract ameliorated the damaging effects of the frozen-thawing process in cryopreserved bull semen. In a dose-dependent pattern, sperm motility, viability, and membrane integrity were improved compared to the untreated control. Furthermore, the extract increased the percentage of viable sperm cells and reduced the percentages of early apoptotic and apoptotic sperm cells as well as the damage in sperm ultra-structure. These activities are in agreement with the robust antioxidant properties in vitro and in the seminal fluid as observed in the total antioxidant capacity and the lipid peroxidation parameter malondialdehyde. LC-MS yielded 35 compounds. The extract was dominated by quercetin-O-galloyl-hexoside and quercetin-O-pentoside, along with other flavonoid glycosides. The polyphenols are probably responsible for the observed activities. In conclusion, the current findings show that A. harveyi leaves are rich in bioactive polyphenols with functional properties, validating its traditional use.


Assuntos
Albizzia/química , Antioxidantes/química , Antioxidantes/farmacologia , Crioprotetores/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bovinos , Cromatografia Líquida de Alta Pressão , Criopreservação , Crioprotetores/química , Masculino , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Espermatozoides/efeitos dos fármacos , Espermatozoides/ultraestrutura , Espectrometria de Massas em Tandem
9.
Metabolites ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276303

RESUMO

Acute Lung Injury (ALI) is a life-threatening syndrome that has been identified as a potential complication of COVID-19. There is a critical need to shed light on the underlying mechanistic pathways and explore novel therapeutic strategies. This study aimed to examine the potential therapeutic effects of Citrus clementine essential oil (CCEO) in treating potassium dichromate (PDC)-induced ALI. The chemical profile of CCEO was created through GC-MS analysis. An in vivo study in rats was conducted to evaluate the effect of CCEO administrated via two different delivery systems (oral/inhalation) in mitigating acute lung injury (ALI) induced by intranasal instillation of PDC. Eight volatile compounds were identified, with monoterpene hydrocarbons accounting for 97.03% of the identified constituents, including 88.84% of D-limonene. CCEO at doses of 100 and 200 mg/kg bw exhibited antioxidant and anti-inflammatory properties. These significant antioxidant properties were revealed through the reduction of malondialdehyde (MDA) and the restoration of reduced glutathione (GSH). In addition, inflammation reduction was observed by decreasing levels of cytokines tumor necrosis factor-α and tumor growth factor-ß (TNF-α and TGF-ß), along with an increase in phosphatidylinositide-3-kinase (PI3K) and Akt overexpression in lung tissue homogenate, in both oral and inhalation routes, compared to the PDC-induced group. These results were supported by histopathological studies and immunohistochemical assessment of TGF-ß levels in lung tissues. These findings revealed that CCEO plays an integral role in relieving ALI induced by intranasal PDC and suggests it as a promising remedy.

10.
Front Microbiol ; 15: 1366614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803373

RESUMO

Introduction: In recent years, the world's attention has been drawn to antimicrobial resistance (AMR) because to the frightening prospect of growing death rates. Nanomaterials are being investigated due to their potential in a wide range of technical and biological applications. Methods: The purpose of this study was to biosynthesis zinc oxide nanoparticles (ZnONPs) using Aspergillus sp. SA17 fungal extract, followed by characterization of the produced nanoparticles (NP) using electron microscopy (TEM and SEM), UV-analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Results and Discussion: The HR-TEM revealed spherical nanoparticles with an average size of 7.2 nm, and XRD validated the crystalline nature and crystal structure features of the generated ZnONPs, while the zeta potential was 18.16 mV, indicating that the particles' surfaces are positively charged. The FT-IR was also used to identify the biomolecules involved in the synthesis of ZnONPs. The antibacterial and anticancer properties of both the crude fungal extract and its nano-form against several microbial strains and cancer cell lines were also investigated. Inhibition zone diameters against pathogenic bacteria ranged from 3 to 13 mm, while IC50 values against cancer cell lines ranged from 17.65 to 84.55 M. Additionally, 33 compounds, including flavonoids, phenolic acids, coumarins, organic acids, anthraquinones, and lignans, were discovered through chemical profiling of the extract using UPLC-QTOF-MS/MS. Some molecules, such pomiferin and glabrol, may be useful for antibacterial purposes, according to in silico study, while daidzein 4'-sulfate showed promise as an anti-cancer metabolite.

11.
Heliyon ; 10(11): e32335, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933965

RESUMO

A comprehensive study of fruits and leaves extracts of Citrus medica var. sarcodactylis Swingle and Limonia acidissima L. family Rutaceae was accomplished to investigate their antiviral activity along with their zinc oxide nanoparticles formulation (ZnONPs) against the avian influenza H5N1 virus. A thorough comparative phytochemical investigation of C. medica and L.acidissima leaves and fruits was performed using UPLC-QTOF-MS-MS. Antiviral effects further aided by molecular docking proved the highly significant potential of using C. medica and L.acidissima extracts as medicinal agents. Antiviral potency is ascendingly arranged as L. acidissima leaves (LAL) > L. acidissima fruits (LAF) > C. medica leaves (CML) at 160 µg. Nano formulation of LAF has the most splendid antiviral upshot. The metabolomic profiling of CMF and LAL revealed the detection of 48 & 74 chromatographic peaks respectively. Docking simulation against five essential proteins in survival and replication of the influenza virus revealed that flavonoid di-glycosides (hesperidin, kaempferol-3-O-rutinoside, and kaempferol-7-neohesperidoside) have shown great affinity toward the five investigated proteins and achieved docking scores which approached or even exceeded that achieved by the native ligands. Hesperidin has demonstrated the best binding affinity toward neuraminidase (NA), haemagglutinin (HA), and polymerase protein PB2 (-10.675, -8.131, and -10.046 kcal/mol respectively. We propose using prepared crude methanol extracts of both plants as an antiviral agent.

12.
Plants (Basel) ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570967

RESUMO

Plant secondary metabolites are key components for new, safe and effective drugs. Ethanolic extract of Maesa indica Roxb. Sweet (ME) aerial parts were used for biosynthesis of sustainable green zinc oxide nanoparticles (ZnO NPs) with an average particle size 6.80 ± 1.47 nm and zeta potential -19.7 mV. Both transmission electron microscopy and X-ray diffraction assay confirmed the hexagonal shape of ZnO NPs. Phenolic ingredients in ME were identified using LC-ESI-MS/MS-MRM revealing the identification of chlorogenic acid, gallic acid, caffeic acid, rutin, coumaric acid, vanillin, naringenin, quercetin, ellagic acid, 3.4-dihydroxybenzoic acid, methyl gallate, kaempferol, ferulic acid, syringic acid, and luteolin. The major compound was chlorogenic acid at concentration of 1803.84 µg/g. The antiviral activity of ME, ZnO NPs, and combination of ME with ZnO NPs against coronavirus 229E were investigated. ZnO NPs had superior antiviral effect against coronavirus 229E than ME while their combination showed the highest anti-coronavirus 229E effect, with 50% inhibition concentration (IC50) of 5.23 ± 0.18 µg/mL and 50% cytotoxic concentration (CC50) of 138.49 ± 0.26 µg/mL while the selectivity index (SI) was 26.47. The current study highlighted the possible novel anti-coronavirus 229E activity of green ZnO NPs synthesized from Maesa indica. More studies are needed to further investigate this antiviral activity to be utilized in future biomedical and environmental applications.

13.
Oxid Med Cell Longev ; 2022: 3486257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387261

RESUMO

We previously annotated the phytochemical constituents of a root extract from Ximenia americana var. caffra and highlighted its hepatoprotective and hypoglycemic properties. We here extended our study on the leaf extract and identified its phytoconstituents using HPLC-PDA-ESI-MS/MS. In addition, we explored its antioxidant, antibacterial, and antiaging activities in vitro and in an animal model, Caenorhabditis elegans. Results from HPLC-PDA-ESI-MS/MS confirmed that the leaves contain 23 secondary metabolites consisting of condensed tannins, flavonol glycosides, flavone glycosides, and flavonol diglycosides. The leaf extract demonstrated significant antioxidant activity in vitro with IC50 value of 5 µg/mL in the DPPH assay and 18.32 µg/mL in the FRAP assay. It also inhibited four enzymes (collagenase, elastase, hyaluronidase, and tyrosinase) crucially involved in skin remodeling and aging processes with comparable activities to reference drugs along with four pure secondary metabolites identified from the extract. In accordance with the in vitro result, in vivo tests using two transgenic strains of C. elegans demonstrated its ability to reverse oxidative stress. Evidence included an increased survival rate in nematodes treated with the prooxidant juglone to 68.9% compared to the 24.8% in untreated worms and a reduced accumulation of intracellular reactive oxygen species (ROS) in a dose-dependent manner to 77.8%. The leaf extract also reduced levels of the expression of HSP 16.2 in a dose-dependent manner to 86.4%. Nuclear localization of the transcription factor DAF-16 was up to 10 times higher in worms treated with the leaf extract than in the untreated worms. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa (a pathogen in skin infections) and reduced the swimming and swarming mobilities in a dose-dependent fashion. In conclusion, leaves of X. americana are a promising candidate for preventing oxidative stress-induced conditions, including skin aging.


Assuntos
Cosmecêuticos , Olacaceae , Animais , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Cosmecêuticos/metabolismo , Cosmecêuticos/farmacologia , Glicosídeos/farmacologia , Olacaceae/metabolismo , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
14.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36558923

RESUMO

Globally, pathogenic microbes have reached a worrisome level of antibiotic resistance. Our work aims to identify and isolate the active components from the bioactive Ficus retusa bark extract and assess the potential synergistic activity of the most major compounds' constituents with the antibiotic tetracycline against certain pathogenic bacterial strains. The phytochemical screening of an acetone extract of F. retusa bark using column chromatography led to the identification of 10 phenolic components. The synergistic interaction of catechin and chlorogenic acid as the most major compounds with tetracycline was evaluated by checkerboard assay followed by time-kill assay, against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and Salmonella typhi with fraction inhibitory concentration index values (FICI) of 0.38, 0.43, 0.38, 0.38, 0.38, and 0.75 for catechin and 0.38, 0.65, 0.38, 0.63, 0.38, and 0.75 for chlorogenic acid. The combination of catechin and chlorogenic acid with tetracycline significantly enhanced antibacterial action against gram-positive and gram-negative microorganisms; therefore, catechin and chlorogenic acid combinations with tetracycline could be employed as innovative and safe antibiotics to combat microbial resistance.

15.
Sci Rep ; 12(1): 10595, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732649

RESUMO

Musa acuminata (MA) is a popular fruit peels in the world. Non-food parts of the plant have been investigated for their antioxidant and anti-ulcerative colitis activity. Metabolomic approaches were found to be informative as a screening tool. It discovered different metabolites depending on statistical analysis. The antioxidant activity content was measured by colorimetric method. Seventy six investigated metabolites were observed. The identities of some of these markers were confirmed based on their MS2 fragmentation and NMR spectroscopy. These include: cinnamic acid and its dimer 2-hydroxy-4-(4-methoxyphenyl)-1H-phenalen-1-one beside; gallic acid and flavonoids; quercetin, quercetin-3-O-ß-D-glucoside, luteolin-7-O-ß-D-glucopyranoside. GC/MS analysis of MA peels essential oil led to identification of 37 compounds. The leaves, pseudostem and fruit peels extracts were tested for their safety and their anti-ulcerative colitis efficacy in rats. Rats were classified into: normal, positive, prednisolone reference group, MA extracts pretreated groups (250-500 mg/kg) for 2 weeks followed by induction of ulcerative colitis by per-rectal infusion of 8% acetic acid. Macroscopic and microscopic examinations were done. Inflammatory markers (ANCA, CRP and Ilß6) were measured in sera. The butanol extracts showed good antioxidant and anti-inflammatory activities as they ameliorated macroscopic and microscopic signs of ulcerative colitis and lowered the inflammatory markers compared to untreated group. MA wastes can be a potential source of bioactive metabolites for industrial use and future employment as promising anti-ulcerative colitis food supplements.


Assuntos
Colite Ulcerativa , Musa , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Extratos Vegetais/química , Quercetina/uso terapêutico , Ratos
16.
Nat Prod Res ; 36(10): 2625-2629, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33957828

RESUMO

Jasminum multiflorum Burm. f. (J. multiflorum) is an ornamental plant with traditional medicinal importance. This study aims to evaluate the activity of J. multiflorum isolated compounds against hepatocellular carcinoma cells infected with hepatitis C virus (HCV) in vitro. The in vitro anti-viral and anti-oncogenic-related activity were validated by anchorage-independent assay plus transwell migration/invasion and spreading assay. In addition to chromatographic isolation of the active metabolites. The flower extract demonstrated a significant antiviral potential through reducing active viral replication by more than 90%. Study results credit this to specific reduction of viral NS5A and cellular EphA2 protein levels. Molecular docking analysis proved the role of the isolated compounds especially multifloroside, jasfloroside A and jasfloroside B as possible anti HCV molecules.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Jasminum , Neoplasias Hepáticas , Antivirais/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Flores/química , Hepacivirus , Humanos , Jasminum/química , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular
17.
Antioxidants (Basel) ; 10(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530540

RESUMO

We have previously reported that the leaf extract of Albizia anthelmintica exhibited substantial antioxidant, anti-inflammatory, analgesic, and antipyretic properties in vivo. We also comprehensively characterized the active phytoconstituents and found several flavonoids and galloyl glucosides derivatives. In the current work, we explored the gastroprotective effects of the leaf extract in an indomethacin-induced ulcer model and the mechanisms involved. The rats being pretreated with the tested extract (100 and 200 mg kg-1) significantly prevented gastric lesions by 87.4% and 92.3%, respectively, and they had no structural derangements in the gastric mucosa. The extract significantly reduced the elevated levels of IKκB, NF-κB, TNF-α, IL-6, iNOS, and lipid peroxidation; increased the reduced level of glutathione peroxidase (GPx) activity; and reduced glutathione (GSH) in the indomethacin-induced ulcer model. The protective activities of the extract were similar in most aspects to those exerted by the known anti-ulcer drug famotidine. These activities might be attributed to the anti-inflammatory and antioxidant activities, and the reduction of iNOS levels. In conclusion, Albizia anthelmintica is a potential candidate for management of gastric ulcers with antioxidant properties.

18.
Biomed Pharmacother ; 143: 112120, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649330

RESUMO

The goal of this work aimed to evaluate the protective effects of pea (Pisum sativum) peels extract versus doxorubicin-induced oxidative myocardial injury in male mice. The mice were divided into seven groups (n = 7): (I) control group; (II) P. sativum 250 group; (III) P. sativum 500 group; (IV) DOX (3 times alternately of 2.5 mg/kg/week, i.p. for a continuous two-week period) group; (V) Vit. E 100 + DOX group; (VI) P. sativum 250 + DOX group, and (VII) P. sativum 500 + DOX group). Twenty polyphenolic compounds, mainly flavonoid glycosides such as quercetin, kaempferol apigenin, and phenolics compounds were characterized by LC-MS/MS analysis in the examined extract. DOX administration elevated the activities of serum biomarkers of myocardial dysfunction (ALT, AST, ALP, LDH, troponin, CPK, and CK-MB), lipid profile, and proinflammatory cytokines. Also, it decreased cardiac antioxidants (GSH, SOD, GPX, CAT) and increased myocardial markers of oxidative stress (NO and MDA) and inflammatory marker (MPO). As well as it downregulated and upregulated the Bcl-2 (anti-apoptotic gene) and the Bax (pro-apoptotic gene) expressions, respectively. Pre-treatment of DOX-exposed mice with P. sativum or vitamin E (as a reference protective antioxidant) alleviated the changes dose-dependently via DOX-induced cardiotoxicity. These data show that P. sativum has a cardio-protective impact against DOX-induced cardiomyocyte damage in mice via boosting endogenous antioxidants, decreasing inflammation, and regulating BcL-2 and Bax apoptosis pathway, which might be related to the presence of flavonoid glycosides. P. sativum peels are a by-product that could be suggested for further screening as a possible new candidate for therapeutic use.


Assuntos
Antioxidantes/farmacologia , Cardiopatias/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Pisum sativum , Extratos Vegetais/farmacologia , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Modelos Animais de Doenças , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pisum sativum/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Metabolismo Secundário , Sementes , Transdução de Sinais
19.
Nat Prod Res ; 35(23): 5518-5520, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32666825

RESUMO

In this study chemical profiling of Jasminum azoricum L. (J. azoricum) using HPLC-PDA/MS/MS and evaluation of its in-vitro cytotoxicity towards the human breast cancer cell line (MCF-7), human colorectal cancer cell (HCT-116) and human hepatocellular carcinoma (Huh-7) cell lines. The viability % was determined by the neutral red uptake assay. The study led to the identification of 37 secondary metabolite; major nine compounds were subjected to virtual docking to determine their role in tumour growth inhibition by controlling apoptosis and cancer cell proliferation using the 3D crystal structure of MST3 ligand protein. Two compounds; sambacoside A and molihauside C, showed high-affinity values of (-9.91, -9.57) kcal/mol against MST3 protein. In silico prediction of absorption, distribution, metabolism, excretion and toxicity (ADMET) was performed and revealed no mutagenicity, no tumorigenicity and non-irritant actions of both compounds, so J. azoricum could be used as a beneficial source for cytotoxic compounds.[Figure: see text].


Assuntos
Jasminum , Cromatografia Líquida de Alta Pressão , Humanos , Simulação de Acoplamento Molecular , Folhas de Planta , Espectrometria de Massas em Tandem
20.
Colloids Surf B Biointerfaces ; 203: 111724, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838582

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus (COVID-19), is the virus responsible for over 69,613,607 million infections and over 1,582,966 deaths worldwide. All treatment measures and protocols were considered to be supportive only and not curative. During this current coronavirus pandemic, searching for pharmaceutical or traditional complementary and integrative medicine to assist with prevention, treatment, and recovery has been advantageous. These phytopharmaceuticals and nutraceuticals can be more economic, available, safe and lower side effects. This is in silico comparison study of ten phenolic antiviral agents against SARS-CoV-2, as well as isolation of the most active metabolite from natural sources. Zinc oxide nanoparticles (ZnO NPs) were also then prepared using these metabolite as a reducing agent. All tested compounds showed predicted anti-SARS-CoV-2 activity. Hesperidin showed the highest docking score, this leads us to isolate it from the orange peels and we confirmed its structure by conventenional spectroscopic analysis. In addition, synthesis of hesperidin zinc oxide nanoparticles was characterized by UV, IR, XRD and TEM. In vitro antiviral activity of hesperidin and ZnO NPs was evaluated against hepatitis A virus as an example of RNA viruses. However, ZnO NPs and hesperidin showed antiviral activity against HAV but ZnO NPs showed higher activity than hesperidin. Thus, hesperidin and its mediated ZnO nanoparticles are willing antiviral agents and further studies against SARS-CoV-2 are required to be used as a potential treatment.


Assuntos
COVID-19 , Hesperidina , Nanopartículas , Óxido de Zinco , Antivirais/farmacologia , Simulação por Computador , Hesperidina/farmacologia , Humanos , SARS-CoV-2 , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA