Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Genet ; 61(5): 469-476, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38458756

RESUMO

BACKGROUND: Marfan syndrome (MFS) is a multisystem disease with a unique combination of skeletal, cardiovascular and ocular features. Geleophysic/acromicric dysplasias (GPHYSD/ACMICD), characterised by short stature and extremities, are described as 'the mirror image' of MFS. The numerous FBN1 pathogenic variants identified in MFS are located all along the gene and lead to the same final pathogenic sequence. Conversely, in GPHYSD/ACMICD, the 28 known heterozygous FBN1 pathogenic variants all affect exons 41-42 encoding TGFß-binding protein-like domain 5 (TB5). METHODS: Since 1996, more than 5000 consecutive probands have been referred nationwide to our laboratory for molecular diagnosis of suspected MFS. RESULTS: We identified five MFS probands carrying distinct heterozygous pathogenic in-frame variants affecting the TB5 domain of FBN1. The clinical data showed that the probands displayed a classical form of MFS. Strikingly, one missense variant affects an amino acid that was previously involved in GPHYSD. CONCLUSION: Surprisingly, pathogenic variants in the TB5 domain of FBN1 can lead to two opposite phenotypes: GPHYSD/ACMICD and MFS, suggesting the existence of different pathogenic sequences with the involvement of tissue specificity. Further functional studies are ongoing to determine the precise role of this domain in the physiopathology of each disease.


Assuntos
Doenças do Desenvolvimento Ósseo , Deformidades Congênitas dos Membros , Síndrome de Marfan , Humanos , Doenças do Desenvolvimento Ósseo/genética , Fibrilina-1/genética , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Mutação
2.
Clin Genet ; 106(1): 90-94, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38424388

RESUMO

Central nervous system (CNS) dural arteriovenous fistulas (DAVF) have been reported in PTEN-related hamartoma tumor syndrome (PHTS). However, PHTS-associated DAVF remain an underexplored field of the PHTS clinical landscape. Here, we studied cases with a PTEN pathogenic variant identified between 2007 and 2020 in our laboratory (n = 58), and for whom brain imaging was available. Two patients had DAVF (2/58, 3.4%), both presenting at advanced stages: a 34-year-old man with a left lateral sinus DAVF at immediate risk of hemorrhage, and a 21-year-old woman with acute intracranial hypertension due to a torcular DAVF. Interestingly, not all patients had 3D TOF/MRA, the optimal sequences to detect DAVF. Early diagnosis of DAVF can be lifesaving, and is easier to treat compared to developed, proliferative, or complex lesions. As a result, one should consider brain MRI with 3D TOF/MRA in PHTS patients at genetic diagnosis, with subsequent surveillance on a case-by-case basis.


Assuntos
Malformações Vasculares do Sistema Nervoso Central , Síndrome do Hamartoma Múltiplo , PTEN Fosfo-Hidrolase , Humanos , Adulto , PTEN Fosfo-Hidrolase/genética , Feminino , Masculino , Malformações Vasculares do Sistema Nervoso Central/genética , Malformações Vasculares do Sistema Nervoso Central/complicações , Malformações Vasculares do Sistema Nervoso Central/diagnóstico por imagem , Malformações Vasculares do Sistema Nervoso Central/diagnóstico , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/complicações , Adulto Jovem , Imageamento por Ressonância Magnética , Mutação
3.
Pediatr Neurol ; 159: 16-25, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094250

RESUMO

BACKGROUND: Genetic epilepsy diagnosis is increasing due to technological advancements. Although the use of molecular diagnosis is increasing, chromosomal microarray analysis (CMA) remains an important diagnostic tool for many patients. We aim to explore the role and indications of CMA in epilepsy, given the current genomic advances. METHODS: We obtained data from 378 epileptic described patients, who underwent CMA between 2015 and 2021. Different types of syndromic or nonsyndromic epilepsy were represented. RESULTS: After excluding patients who were undertreated or had missing data, we included 250 patients with treated epilepsy and relevant clinical information. These patients mostly had focal epilepsy or developmental and epileptic encephalopathy, with a median start age of 2 years. Ninety percent of the patients had intellectual disability, more than two thirds had normal head size, and 60% had an abnormal magnetic resonance imaging. We also included 10 patients with epilepsy without comorbidities. In our cohort, we identified 35 pathogenic copy number variations (CNVs) explaining epilepsy with nine recurrent CNVs enriched in patients with epilepsy, 12 CNVs related to neurodevelopmental disorder phenotype with possible epilepsy, five CNVs including a gene already known in epilepsy, and nine CNVs based on size combined with de novo occurrence. The diagnosis rate in our study reached 14% (35 of 250) with first-line CMA, as previously reported. Although targeted gene panel sequencing could potentially diagnose some of the reported epilepsy CNVs (34% [12 of 35]). CONCLUSIONS: CMA remains a viable option as the first-line genetic test in cases where other genetic tests are not available and as a second-line diagnostic technique if gene panel or exome sequencing yields negative results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA