Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 192(6): 410, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32488345

RESUMO

Existing research on phosphorus removal from wastewater mostly focused on inorganic phosphorus while ignoring organic phosphorus, which has potential bioavailability. This study aims to provide an innovation for the development of advanced treatment material for both inorganic and organic phosphorus removal in water. In this study, ferrihydrite loaded on the graphene oxide (FeOOH-GO) composite adsorbent was synthesized by surface precipitation method, and its ability to remove both phosphate and diazinon as forms of inorganic and organic phosphorous from water was investigated. Characterization of the loaded composite using X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform-infrared spectroscopy (FTIR) indicated that FeOOH was successfully loaded onto graphene. The results of batch adsorption experiments showed that the adsorbent could remove both inorganic and organic phosphorus compounds simultaneously from water. When FeOOH content is 40%, the equilibrium adsorption amount of FeOOH-GO composite adsorbent for phosphate and diazinon was 5.81 and 23.20 mg g-1, respectively. Environmental parameters such as pH and initial concentration have important influence on phosphorus removal by FeOOH-GO composite adsorbent and the removal efficiency of the inorganic and organic phosphorus from water decreases by increasing the initial concentration of phosphate and diazinon and the pH. It was concluded that the FeOOH-GO composite adsorbent has great potential to remove both inorganic and organic phosphate simultaneously from contaminated water.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Monitoramento Ambiental , Compostos Férricos , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Environ Sci Pollut Res Int ; 28(30): 41431-41438, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33786759

RESUMO

In aquacultures, heavy metals could be accumulated in fish tissues from natural and human-related sources depending on different factors. This study aims to estimate the level of bioaccumulation of heavy metals in cultured Gilt-head sea bream Sparusaurata. In this regard, heavy metals concentrations were measured in both water and fish musculature that were collected from a private fish farm in Kafr ElSheikh, Egypt. Regarding the water samples, heavy metals were within the permissible limits with exception of Cd, Cu, and Zn. In fish musculature, all heavy metals were within the WHO/FAO permissible limits. The bioaccumulation factor (BAF) indicated that mostly all heavy metals accumulation in the Gilt-head sea bream musculature decreased with time which may be correlated with the increase in water pH, calcium, and other cations concentrations. The hazard index (HI) calculations indicate no adverse health effects of heavy metals on humans through daily fish consumption so far. However, health risks are not negligible making the regular monitoring of metal contaminants in the studied area a necessity.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental , Feminino , Humanos , Metais Pesados/análise , Medição de Risco , Suínos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA