Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 872654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665142

RESUMO

Soil contamination with cobalt (Co) negatively impacts plant growth and production. To combat Co toxicity, plant growth-promoting microorganisms for improving plant growth are effectively applied. To this end, unclassified haloarchaeal species strain NRS_31 (OL912833), belonging to Haloferax genus, was isolated, identified for the first time, and applied to mitigate the Co phytotoxic effects on maize plants. This study found that high Co levels in soil lead to Co accumulation in maize leaves. Co accumulation in the leaves inhibited maize growth and photosynthetic efficiency, inducing oxidative damage in the tissue. Interestingly, pre-inoculation with haloarchaeal species significantly reduced Co uptake and mitigated the Co toxicity. Induced photosynthesis improved sugar metabolism, allocating more carbon to defend against Co stress. Concomitantly, the biosynthetic key enzymes involved in sucrose (sucrose-P-synthase and invertases) and proline (pyrroline-5- carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR)) biosynthesis significantly increased to maintain plant osmotic potential. In addition to their osmoregulation potential, soluble sugars and proline can contribute to maintaining ROS hemostasis. Maize leaves managed their oxidative homeostasis by increasing the production of antioxidant metabolites (such as phenolics and tocopherols) and increasing the activity of ROS-scavenging enzymes (such as POX, CAT, SOD, and enzymes involved in the AsA/GSH cycle). Inside the plant tissue, to overcome heavy Co toxicity, maize plants increased the synthesis of heavy metal-binding ligands (metallothionein, phytochelatins) and the metal detoxifying enzymes (glutathione S transferase). Overall, the improved ROS homeostasis, osmoregulation, and Co detoxification systems were the basis underlying Co oxidative stress, mitigating haloarchaeal treatment's impact.

2.
Infect Drug Resist ; 14: 1931-1939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079303

RESUMO

BACKGROUND: The therapeutic management of carbapenem-resistant Acinetobacter baumannii (CR-AB) represents a serious challenge to the public health sector because these pathogens are resistant to a wide range of antibiotics, resulting in limited treatment options. The present study was planned to investigate the clonal spread of CR-AB in a clinical setting. METHODOLOGY: A total of 174 A. baumannii clinical isolates were collected from a tertiary care hospitals in Lahore, Pakistan. The isolates were confirmed by VITEK 2 compact system and molecular identification of recA and bla OXA-51. Antimicrobial profile and the screening of carbapenem-resistant genes were carried out using VITEK 2 system and PCR, respectively. The molecular typing of the isolates was performed according to the Pasteur scheme. RESULTS: Of the 174 A. baumannii isolates collected, the majority were isolated from sputum samples (46.5%) and in the intensive care unit (ICU, 75%). Among these, 113/174 (64.9%) were identified as CR-AB, and 49.5% and 24.7% harbored bla OXA-23 and bla NDM-1, respectively. A total of 11 (9.7%) isolates co-harbored bla OXA-51, bla NDM-1, and bla OXA-23. Interestingly, 46.9% of the CR-AB belonged to sequence type 2 (ST2; CC1), whereas 15.9% belonged to ST1 (CC1). All of the CR-AB isolates showed extensive resistance to clinically relevant antibiotics, except colistin. CONCLUSION: The study concluded CR-AB ST2 clone harboring bla OXA-23 and bla NDM-1 are widely distributed in Pakistan's clinical settings, which could result in increased mortality. Strict compliance with the National Action Plan on Antimicrobial Resistance is necessary to reduce the impacts of these strains.

3.
Bosn J Basic Med Sci ; 21(5): 515-527, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714258

RESUMO

Coronavirus disease-19 (COVID-19) is an extremely infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has become a major global health concern. The induction of a coordinated immune response is crucial to the elimination of any pathogenic infection. However, SARS-CoV-2 can modulate the host immune system to favor viral adaptation and persistence within the host. The virus can counteract type I interferon (IFN-I) production, attenuating IFN-I signaling pathway activation and disrupting antigen presentation. Simultaneously, SARS-CoV-2 infection can enhance apoptosis and the production of inflammatory mediators, which ultimately results in increased disease severity. SARS-CoV-2 produces an array of effector molecules, including nonstructural proteins (NSPs) and open-reading frames (ORFs) accessory proteins. We describe the complex molecular interplay of SARS-CoV-2 NSPs and accessory proteins with the host's signaling mediating immune evasion in the current review. In addition, the crucial role played by immunomodulation therapy to address immune evasion is discussed. Thus, the current review can provide new directions for the development of vaccines and specific therapies.


Assuntos
COVID-19/imunologia , Evasão da Resposta Imune/fisiologia , Imunidade Inata/fisiologia , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/fisiologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Humanos
4.
Antibiotics (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923991

RESUMO

Plasmid-mediated colistin resistance (Col-R) conferred by mcr genes endangers the last therapeutic option for multifarious ß-lactamase-producing bacteria. The current study aimed to explore the mcr gene molecular epidemiology in extensively drug-resistant (XDR) bacteria. Col-R gram-negative bacterial strains were screened using a minimum inhibitory concentration (MIC) breakpoint ≥4 µg/mL. Resistant isolates were examined for mcr variants, extended-spectrum ß-lactamase, AmpC, and carbapenemase genes using polymerase chain reaction (PCR). The MIC breakpoints for mcr-positive strains were determined using broth microdilution and E-test strips. Overall, 19/718 (2.6%) gram-negative rods (GNRs) harboring mcr were identified, particularly in pus (p = 0.01) and tracheal secretions (p = 0.03). Molecular epidemiology data confirmed 18/19 (95%) mcr-1 and 1/19 (5%) mcr-2 genes. Integron detection revealed 15/17 (88%) Int-1 and 2/17 (12%) Int-2. Common co-expressing drug-resistant ß-lactamase genes included 8/16 (50%) blaCTM-1, 3/16 (19%) blaCTM-15, 3/3 (100%) blaCMY-2, 2/8 (25%) blaNDM-1, and 2/8 (25%) blaNDM-5. The MIC50 and MIC90 values (µg/mL) were as follows: Escherichia coli, 12 and 24; Klebsiella pneumoniae, 12 and 32; Acinetobacter baumannii, 8 and 12; and Pseudomonas aeruginosa, 32 and 64, respectively. Treatment of XDR strains has become challenging owing to the co-expression of mcr-1, mcr-2, multifarious ß-lactamase genes, and integrons.

5.
Pathogens ; 9(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188164

RESUMO

Macrophages are one of the first innate defense barriers and play an indispensable role in communication between innate and adaptive immune responses, leading to restricted Mycobacterium tuberculosis (Mtb) infection. The macrophages can undergo programmed cell death (apoptosis), which is a crucial step to limit the intracellular growth of bacilli by liberating them into extracellular milieu in the form of apoptotic bodies. These bodies can be taken up by the macrophages for the further degradation of bacilli or by the dendritic cells, thereby leading to the activation of T lymphocytes. However, Mtb has the ability to interplay with complex signaling networks to subvert macrophage apoptosis. Here, we describe the intelligent strategies of Mtb inhibition of macrophages apoptosis. This review provides a platform for the future study of unrevealed Mtb anti-apoptotic mechanisms and the design of therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA